Timeline_of_particle_discoveries

Timeline of particle discoveries

Timeline of particle discoveries

Add article description


This is a timeline of subatomic particle discoveries, including all particles thus far discovered which appear to be elementary (that is, indivisible) given the best available evidence. It also includes the discovery of composite particles and antiparticles that were of particular historical importance.

More specifically, the inclusion criteria are:

  • Elementary particles from the Standard Model of particle physics that have so far been observed. The Standard Model is the most comprehensive existing model of particle behavior. All Standard Model particles including the Higgs boson have been verified, and all other observed particles are combinations of two or more Standard Model particles.
  • Antiparticles which were historically important to the development of particle physics, specifically the positron and antiproton. The discovery of these particles required very different experimental methods from that of their ordinary matter counterparts, and provided evidence that all particles had antiparticles—an idea that is fundamental to quantum field theory, the modern mathematical framework for particle physics. In the case of most subsequent particle discoveries, the particle and its anti-particle were discovered essentially simultaneously.
  • Composite particles which were the first particle discovered containing a particular elementary constituent, or whose discovery was critical to the understanding of particle physics.
More information Time, Event ...

See also


References

  1. Hockberger, P. E. (2002). "A history of ultraviolet photobiology for humans, animals and microorganisms". Photochem. Photobiol. 76 (6): 561–579. doi:10.1562/0031-8655(2002)0760561AHOUPF2.0.CO2. ISSN 0031-8655. PMID 12511035. S2CID 222100404.
  2. The ozone layer protects humans from this. Lyman, T. (1914). "Victor Schumann". Astrophysical Journal. 38: 1–4. Bibcode:1914ApJ....39....1L. doi:10.1086/142050.
  3. W.C. Röntgen (1895). "Über ein neue Art von Strahlen. Vorlaufige Mitteilung". Sitzber. Physik. Med. Ges. 137: 1. as translated in A. Stanton (1896). "On a New Kind of Rays". Nature. 53 (1369): 274–276. Bibcode:1896Natur..53R.274.. doi:10.1038/053274b0.
  4. J.J. Thomson (1897). "Cathode Rays". Philosophical Magazine. 44 (269): 293–316. doi:10.1080/14786449708621070.
  5. P. Villard (1900). "Sur la Réflexion et la Réfraction des Rayons Cathodiques et des Rayons Déviables du Radium". Comptes Rendus de l'Académie des Sciences. 130: 1010.
  6. E. Rutherford (1911). "The Scattering of α- and β- Particles by Matter and the Structure of the Atom". Philosophical Magazine. 21 (125): 669–688. doi:10.1080/14786440508637080.
  7. E. Rutherford (1919). "Collision of α Particles with Light Atoms IV. An Anomalous Effect in Nitrogen". Philosophical Magazine. 37: 581.
  8. Brickwedde, Ferdinand G. (1982). "Harold Urey and the discovery of deuterium". Physics Today. 35 (9): 34. Bibcode:1982PhT....35i..34B. doi:10.1063/1.2915259.
  9. Urey, Harold; Brickwedde, F.; Murphy, G. (1932). "A Hydrogen Isotope of Mass 2". Physical Review. 39 (1): 164–165. Bibcode:1932PhRv...39..164U. doi:10.1103/PhysRev.39.164.
  10. C.D. Anderson (1932). "The Apparent Existence of Easily Deflectable Positives". Science. 76 (1967): 238–9. Bibcode:1932Sci....76..238A. doi:10.1126/science.76.1967.238. PMID 17731542.
  11. S.H. Neddermeyer; C.D. Anderson (1937). "Note on the nature of Cosmic-Ray Particles" (PDF). Physical Review. 51 (10): 884–886. Bibcode:1937PhRv...51..884N. doi:10.1103/PhysRev.51.884.
  12. M. Conversi; E. Pancini; O. Piccioni (1947). "On the Disintegration of Negative Muons". Physical Review. 71 (3): 209–210. Bibcode:1947PhRv...71..209C. doi:10.1103/PhysRev.71.209.
  13. H. Yukawa (1935). "On the Interaction of Elementary Particles". Proceedings of the Physico-Mathematical Society of Japan. 17: 48.
  14. G.D. Rochester; C.C. Butler (1947). "Evidence for the Existence of New Unstable Elementary Particles". Nature. 160 (4077): 855–857. Bibcode:1947Natur.160..855R. doi:10.1038/160855a0. PMID 18917296. S2CID 33881752.
  15. O. Chamberlain; E. Segrè; C. Wiegand; T. Ypsilantis (1955). "Observation of Antiprotons" (PDF). Physical Review. 100 (3): 947–950. Bibcode:1955PhRv..100..947C. doi:10.1103/PhysRev.100.947.
  16. F. Reines; C.L. Cowan (1956). "The Neutrino". Nature. 178 (4531): 446–449. Bibcode:1956Natur.178..446R. doi:10.1038/178446a0. S2CID 4293703.
  17. G. Danby; et al. (1962). "Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos". Physical Review Letters. 9 (1): 36–44. Bibcode:1962PhRvL...9...36D. doi:10.1103/PhysRevLett.9.36.
  18. "Home | CERN Teacher Programmes". teacher-programmes.web.cern.ch. Retrieved 20 April 2023.
  19. R. Nave. "The Xi Baryon". HyperPhysics. Retrieved 20 June 2009.
  20. E.D. Bloom; et al. (1969). "High-Energy Inelastic ep Scattering at 6° and 10°". Physical Review Letters. 23 (16): 930–934. Bibcode:1969PhRvL..23..930B. doi:10.1103/PhysRevLett.23.930.
  21. M. Breidenbach; et al. (1969). "Observed Behavior of Highly Inelastic Electron-Proton Scattering". Physical Review Letters. 23 (16): 935–939. Bibcode:1969PhRvL..23..935B. doi:10.1103/PhysRevLett.23.935. OSTI 1444731. S2CID 2575595.
  22. B.J. Bjørken; S.L. Glashow (1964). "Elementary Particles and SU(4)". Physics Letters. 11 (3): 255–257. Bibcode:1964PhL....11..255B. doi:10.1016/0031-9163(64)90433-0.
  23. M.L. Perl; et al. (1975). "Evidence for Anomalous Lepton Production in e+e Annihilation". Physical Review Letters. 35 (22): 1489–1492. Bibcode:1975PhRvL..35.1489P. doi:10.1103/PhysRevLett.35.1489.
  24. S.W. Herb; et al. (1977). "Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions". Physical Review Letters. 39 (5): 252–255. Bibcode:1977PhRvL..39..252H. doi:10.1103/PhysRevLett.39.252. OSTI 1155396.
  25. D.P. Barber; et al. (1979). "Discovery of Three-Jet Events and a Test of Quantum Chromodynamics at PETRA". Physical Review Letters. 43 (12): 830–833. Bibcode:1979PhRvL..43..830B. doi:10.1103/PhysRevLett.43.830. S2CID 13903005.
  26. F. Abe et al. (CDF collaboration) (1995). "Observation of Top quark production in p–p Collisions with the Collider Detector at Fermilab". Physical Review Letters. 74 (14): 2626–2631. arXiv:hep-ex/9503002. Bibcode:1995PhRvL..74.2626A. doi:10.1103/PhysRevLett.74.2626. PMID 10057978. S2CID 119451328.
  27. S. Arabuchi et al. (D0 collaboration) (1995). "Observation of the Top Quark". Physical Review Letters. 74 (14): 2632–2637. arXiv:hep-ex/9503003. Bibcode:1995PhRvL..74.2632A. doi:10.1103/PhysRevLett.74.2632. PMID 10057979. S2CID 42826202.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  28. G. Baur; et al. (1996). "Production of Antihydrogen". Physics Letters B. 368 (3): 251–258. Bibcode:1996PhLB..368..251B. CiteSeerX 10.1.1.38.7538. doi:10.1016/0370-2693(96)00005-6.
  29. "New State of Matter created at CERN". CERN. Retrieved 22 May 2020.
  30. "Physicists Find First Direct Evidence for Tau Neutrino at Fermilab" (Press release). Fermilab. 20 July 2000. Retrieved 20 March 2010.
  31. Boyle, Alan (4 July 2012). "Milestone in Higgs quest: Scientists find new particle". MSNBC. MSNBC. Archived from the original on 7 July 2012. Retrieved 5 July 2012.

Share this article:

This article uses material from the Wikipedia article Timeline_of_particle_discoveries, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.