Timeline of science and engineering in the Muslim world
This timeline of science and engineering in the Muslim world covers the time period from the eighth century AD to the introduction of European science to the Muslim world in the nineteenth century. All year dates are given according to the Gregorian calendar except where noted.
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)

Eighth Century
 d 777 CE Ibrāhīm alFazārī Ibrahim ibn Habib ibn Sulayman ibn Samura ibn Jundab alFazari (Arabic: إبراهيم بن حبيب بن سليمان بن سمرة بن جندب الفزاري) (died 777 CE) was an 8thcentury Muslim mathematician and astronomer at the Abbasid court of the Caliph AlMansur (r. 754–775). He should not to be confused with his son Muḥammad ibn Ibrāhīm alFazārī, also an astronomer. He composed various astronomical writings ("on the astrolabe", "on the armillary spheres", "on the calendar").
 d 796 Muhammad ibn Ibrahim ibn Habib ibn Sulayman ibn Samra ibn Jundab alFazari (Arabic: إبراهيم بن حبيب بن سليمان بن سمرة بن جندب الفزاري) (died 796 or 806) was a Muslim philosopher, mathematician and astronomer. He is not to be confused with his father Ibrāhīm alFazārī, also an astronomer and mathematician. Some sources refer to him as an Arab, other sources state that he was a Persian. AlFazārī translated many scientific books into Arabic and Persian. He is credited to have built the first astrolabe in the Islamic world. Along with Yaʿqūb ibn Ṭāriq and his father he helped translate the Indian astronomical text by Brahmagupta (fl. 7th century), the Brāhmasphuṭasiddhānta, into Arabic as AzZīj ‛alā Sinī al‛Arab., or the Sindhind. This translation was possibly the vehicle by means of which the Hindu numerals were transmitted from India to Islam.
Biologists, neuroscientists, and psychologists
 (654–728) Ibn Sirin Muhammad Ibn Sirin (Arabic: محمد بن سيرين) (born in Basra) was a Muslim mystic and interpreter of dreams who lived in the 8th century. He was a contemporary of Anas ibn Malik. Once regarded as the same person as Achmet son of Seirim, this is no longer believed to be true, as shown by Maria Mavroudi.
 780 – 850: alKhwarizmi Developed the "calculus of resolution and juxtaposition" (hisab aljabr w'almuqabala), more briefly referred to as aljabr, or algebra.
Ninth Century
Chemistry
 801 – 873: AlKindi writes on the distillation of wine as that of rose water and gives 107 recipes for perfumes, in his book Kitab Kimia al'otoor wa altas`eedat (book of the chemistry of perfumes and distillations.)^{[citation needed]}
 854 – 930: AlRazi wrote on Naft (naphta or petroleum) and its distillates in his book "Kitab sirr alasrar" (book of the secret of secrets.) When choosing a site to build Baghdad's hospital, he hung pieces of fresh meat in different parts of the city. The location where the meat took the longest to rot was the one he chose for building the hospital. Advocated that patients not be told their real condition so that fear or despair do not affect the healing process. Wrote on alkali, caustic soda, soap and glycerine. Gave descriptions of equipment processes and methods in his book Kitab alAsrar (book of secrets) in 925.
Mathematics
 826 – 901: Thabit ibn Qurra (Latinized, Thebit.) Studied at Baghdad's House of Wisdom under the Banu Musa brothers. Discovered a theorem that enables pairs of amicable numbers to be found.^{[citation needed]} Later, alBaghdadi (b. 980) developed a variant of the theorem.
Miscellaneous
 c. 810: Bayt alHikma (House of Wisdom) set up in Baghdad. There Greek and Indian mathematical and astronomy works are translated into Arabic.
 810 – 887: Abbas ibn Firnas. Planetarium, artificial crystals. According to one account that was written seven centuries after his death, Ibn Firnas was injured during an elevated winged trial flight.
Tenth Century
By this century, three systems of counting are used in the Arab world. Fingerreckoning arithmetic, with numerals written entirely in words, used by the business community; the sexagesimal system, a remnant originating with the Babylonians, with numerals denoted by letters of the arabic alphabet and used by Arab mathematicians in astronomical work; and the Indian numeral system, which was used with various sets of symbols. Its arithmetic at first required the use of a dust board (a sort of handheld blackboard) because "the methods required moving the numbers around in the calculation and rubbing some out as the calculation proceeded."
Chemistry
 957: Abul Hasan Ali AlMasudi, wrote on the reaction of alkali water with zaj (vitriol) water giving sulfuric acid.
Mathematics
 920: alUqlidisi. Modified arithmetic methods for the Indian numeral system to make it possible for pen and paper use. Hitherto, doing calculations with the Indian numerals necessitated the use of a dust board as noted earlier.
 940: Born Abu'lWafa alBuzjani. Wrote several treatises using the fingercounting system of arithmetic and was also an expert on the Indian numerals system. About the Indian system, he wrote: "[It] did not find application in business circles and among the population of the Eastern Caliphate for a long time."[1] Using the Indian numeral system, abu'l Wafa was able to extract roots.
 980: alBaghdadi Studied a slight variant of Thabit ibn Qurra's theorem on amicable numbers.[1] AlBaghdadi also wrote about and compared the three systems of counting and arithmetic used in the region during this period.
Eleventh Century
Mathematics
 1048 – 1131: Omar Khayyam. Persian mathematician and poet. "Gave a complete classification of cubic equations with geometric solutions found by means of intersecting conic sections.".[1] Extracted roots using the decimal system (the Indian numeral system).
Twelfth Century
Cartography
 1100–1165: Muhammad alIdrisi, aka Idris alSaqalli aka alsharif alidrissi of Andalusia and Sicily. Known for having drawn some of the most advanced ancient world maps.
Mathematics
 1130–1180: AlSamawal. An important member of alKaraji's school of algebra. Gave this definition of algebra: "[it is concerned] with operating on unknowns using all the arithmetical tools, in the same way as the arithmetician operates on the known."[1]
 1135: Sharaf alDīn alṬūsī. Follows alKhayyam's application of algebra of geometry, rather than follow the general development that came through alKaraji's school of algebra. Wrote a treatise on cubic equations which [2]^{[page needed]} describes thus: "[the treatise] represents an essential contribution to another algebra which aimed to study curves by means of equations, thus inaugurating the beginning of algebraic geometry." (quoted in [1] ).
Thirteenth Century
Chemistry
 AlJawbari describes the preparation of rose water in the work "Book of Selected Disclosure of Secrets" (Kitab kashf alAsrar).
 Materials; glassmaking: Arabic manuscript on the manufacture of false gemstones and diamonds. Also describes spirits of alum, spirits of saltpetre and spirits of salts (hydrochloric acid).
 An Arabic manuscript written in Syriac script gives description of various chemical materials and their properties such as sulfuric acid, salammoniac, saltpetre and zaj (vitriol).
Mathematics
 1260: alFarisi. Gave a new proof of Thabit ibn Qurra's theorem, introducing important new ideas concerning factorization and combinatorial methods. He also gave the pair of amicable numbers 17296, 18416 which have also been joint attributed to Fermat as well as Thabit ibn Qurra.[3]
Miscellaneous
 Mechanical engineering: Ismail alJazari described 100 mechanical devices, some 80 of which are trick vessels of various kinds, along with instructions on how to construct them
 Medicine; Scientific method: Ibn AlNafis (1213–1288) Damascene physician and anatomist. Discovered the lesser circulatory system (the cycle involving the ventricles of the heart and the lungs) and described the mechanism of breathing and its relation to the blood and how it nourishes on air in the lungs. Followed a "constructivist" path of the smaller circulatory system: "blood is purified in the lungs for the continuance of life and providing the body with the ability to work". During his time, the common view was that blood originates in the liver then travels to the right ventricle, then on to the organs of the body; another contemporary view was that blood is filtered through the diaphragm where it mixes with the air coming from the lungs. Ibn alNafis discredited all these views including ones by Galen and Avicenna (ibn Sina). At least an illustration of his manuscript is still extant. William Harvey explained the circulatory system without reference to ibn alNafis in 1628. Ibn alNafis extolled the study of comparative anatomy in his "Explaining the dissection of [Avicenna's] AlQanoon" which includes a preface, and citations of sources. Emphasized the rigours of verification by measurement, observation and experiment. Subjected conventional wisdom of his time to a critical review and verified it with experiment and observation, discarding errors.
Fourteenth Century
Astronomy
 1393–1449: Ulugh Beg commissions an observatory at Samarqand in presentday Uzbekistan.^{[citation needed]}
Mathematics
 1380–1429: alKashi. According to,[1] "contributed to the development of decimal fractions not only for approximating algebraic numbers, but also for real numbers such as pi. His contribution to decimal fractions is so major that for many years he was considered as their inventor. Although not the first to do so, alKashi gave an algorithm for calculating nth roots which is a special case of the methods given many centuries later by Ruffini and Horner."
Fifteenth Century
Mathematics
 Ibn alBanna and alQalasadi used symbols for mathematics "and, although we do not know exactly when their use began, we know that symbols were used at least a century before this."[1]
Miscellaneous
 Astronomy and mathematics: Ibn Masoud (Ghayyathuddin Jamshid ibn Mohamed ibn mas`oud, d. 1424 or 1436.) Wrote on the decimal system. Computed and observed the solar eclipses of 809AH, 810AH and 811AH, after being invited by Ulugh Beg, based in Samarqand to pursue his study of mathematics, astronomy and physics. His works include "The Key of arithmetics"; "Discoveries in mathematics"; "The Decimal point"; "the benefits of the zero". The contents of the Benefits of the Zero are an introduction followed by five essays: On whole number arithmetic; On fractional arithmetic; on astrology; on areas; on finding the unknowns [unknown variables]. He also wrote a "Thesis on the sine and the chord"; "thesis on the circumference" in which he found the ratio of the circumference to the radius of a circle to sixteen decimal places; "The garden of gardens" or "promenade of the gardens" describing an instrument he devised and used at the Samarqand observatory to compile an ephemeris, and for computing solar and lunar eclipses; The ephemeris "Zayj AlKhaqani" which also includes mathematical tables and corrections of the ephemeris by AlTusi; "Thesis on finding the firstdegree sine".
Seventeenth century
Mathematics
 The Arabic mathematician Mohammed Baqir Yazdi discovered the pair of amicable numbers 9,363,584 and 9,437,056 for which he is jointly credited with Descartes.[3]
Eighteenth century
 A 17th century celestial globe was made by Diya’ addin Muhammad in Lahore, 1663 (now in Pakistan).[4] It is now housed at the National Museum of Scotland. It is encircled by a meridian ring and a horizon ring.[5] The latitude angle of 32° indicates that the globe was made in the Lahore workshop.[6] This specific 'workshop claims 21 signed globes—the largest number from a single shop’ making this globe a good example of Celestial Globe production at its peak.[7]
See also
 Arab Agricultural Revolution
 Islamic Golden Age
 Islamic science
 Ibn Sina Academy of Medieval Medicine and Sciences
 List of inventions in the medieval Islamic world
References
Citations
 Arabic Mathematics at the University of StAndrews, Scotland
 Rashed, R (1994). The development of Arabic mathematics: between arithmetic and algebra. London, England.
 http://amicable.homepage.dk/apstat.htm#discoverer
 "Celestial globe". National Museums Scotland. Retrieved 15 October 2020.
 SavageSmith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 67.
 SavageSmith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 69.
 SavageSmith, Emilie (1985). Islamicate Celestial Globes: Their History, Construction, and Use. Washington, D.C.: Smithsonian Institution Press. p. 43.
Sources
 Donald Routledge Hill and Ahmad Y Hassan (1986), Islamic technology–an illustrated history, ISBN 0521263336.
 Rashed, Roshdi; Morelon, Régis (1996). Encyclopedia of the History of Arabic Science. Routledge. ISBN 0415124107.