# Vector calculus

**Vector calculus**, or **vector analysis**, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of
electromagnetic fields, gravitational fields, and fluid flow.

This article includes a list of general references, but it lacks sufficient corresponding inline citations. (February 2016) |

Part of a series of articles about |

Calculus |
---|

Vector calculus was developed from quaternion analysis by J. Willard Gibbs and Oliver Heaviside near the end of the 19th century, and most of the notation and terminology was established by Gibbs and Edwin Bidwell Wilson in their 1901 book, *Vector Analysis*. In the conventional form using cross products, vector calculus does not generalize to higher dimensions, while the alternative approach of geometric algebra which uses exterior products does (see § Generalizations below for more).