Ventilation (architecture)

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of indoor environment, or other objectives.

An ab anbar (water reservoir) with double domes and windcatchers (openings near the top of the towers) in the central desert city of Naeen, Iran. Windcatchers are a form of natural ventilation.[1]

The intentional introduction of outdoor air is usually categorized as either mechanical ventilation, natural ventilation,[2] or mixed-mode ventilation (hybrid ventilation).

  • Mechanical ventilation is the intentional fan driven flow of outdoor air into a building. Mechanical ventilation systems may include supply fans (which push outdoor air into a building), exhaust fans (which draw air out of building and thereby cause equal ventilation flow into a building), or a combination of both. Mechanical ventilation is often provided by equipment that is also used to heat and cool a space.
  • Natural ventilation is the intentional passive flow of outdoor air into a building through planned openings (such as louvers, doors, and windows). Natural ventilation does not require mechanical systems to move outdoor air. Instead, it relies entirely on passive physical phenomena, such as wind pressure, or the stack effect. Natural ventilation openings may be fixed, or adjustable. Adjustable openings may be controlled automatically (automated), controlled by occupants (operable), or a combination of both.
  • Mixed-mode ventilation systems use both mechanical and natural processes. The mechanical and natural components may be used at the same time, or at different times of day, or in different seasons of the year.[3] Since natural ventilation flow depends on environmental conditions, it may not always provide an appropriate amount of ventilation. In this case, mechanical systems may be used to supplement or regulate the naturally driven flow.

Ventilation is typically described as separate from infiltration.

  • Infiltration is the circumstantial flow of air from outdoors to indoors through leaks (unplanned openings) in a building envelope. When a building design relies on infiltration to maintain indoor air quality, this flow has been referred to as adventitious ventilation.[4]

The design of buildings that promote occupant health and well being requires clear understanding of the ways that ventilation airflow interacts with, dilutes, displaces or introduces pollutants within the occupied space. Although ventilation is an integral component to maintaining good indoor air quality, it may not be satisfactory alone.[5] In scenarios where outdoor pollution would deteriorate indoor air quality, other treatment devices such as filtration may also be necessary. In kitchen ventilation systems, or for laboratory fume hoods, the design of effective effluent capture can be more important than the bulk amount of ventilation in a space. More generally, the way that an air distribution system causes ventilation to flow into and out of a space impacts the ability for a particular ventilation rate to remove internally generated pollutants. The ability for a system to reduce pollution in a space is described as its "ventilation effectiveness". However, the overall impacts of ventilation on indoor air quality can depend on more complex factors such as the sources of pollution, and the ways that activities and airflow interact to affect occupant exposure.

An array of factors related to design and operation of ventilation systems are regulated by various codes and standards. Standards dealing with the design and operation of ventilation systems for the purpose of achieving acceptable indoor air quality include: ASHRAE Standards 62.1 and 62.2, the International Residential Code, the International Mechanical Code, and the United Kingdom Building Regulations Part F. Other standards focused on energy conservation also impact the design and operation of ventilation systems, including: ASHRAE Standard 90.1, and the International Energy Conservation Code.

In many instances, ventilation for indoor air quality is simultaneously beneficial for the control of thermal comfort. Increasing the ventilation is essential to enhance the physical health of people.[6] At these times, it can be useful to increase the rate of ventilation beyond the minimum required for indoor air quality. Two examples include air-side economizer cooling and ventilative pre-cooling. In other instances, ventilation for indoor air quality contributes to the need for - and energy use by - mechanical heating and cooling equipment. In hot and humid climates, dehumidification of ventilation air can be a particularly energy intensive process.

Ventilation should be considered for its relationship to "venting" for appliances and combustion equipment such as water heaters, furnaces, boilers, and wood stoves. Most importantly, the design of building ventilation must be careful to avoid the backdraft of combustion products from "naturally vented" appliances into the occupied space. This issue is of greater importance for buildings with more air tight envelopes. To avoid the hazard, many modern combustion appliances utilize "direct venting" which draws combustion air directly from outdoors, instead of from the indoor environment.