Z18XE

GM Family 1 engine

GM Family 1 engine

Reciprocating internal combustion engine


The GM Family I is a straight-four piston engine that was developed by Opel, a former subsidiary of General Motors and now a subsidiary of PSA Group, to replace the Vauxhall OHV, Opel OHV and the smaller capacity Opel CIH engines for use on small to mid-range cars from Opel/Vauxhall. The engine first appeared in the Opel Kadett D in 1979, and shortly afterwards in its Vauxhall badged sister – the Vauxhall Astra Mk.1 in 1980. Despite this, the previous Opel OHV engine continued to be sold in entry level versions of the Opel Kadett/Astra and Corsa throughout the 1980s.

Quick Facts Family 1, Overview ...

The Family I is informally known as the "small block", since it shares its basic design and architecture with the larger Family II unit (correspondingly known as the "large block"), which covers the mid range and higher engine capacities up to 2400cc.

Originally produced at the Aspern engine plant, production was moved to the Szentgotthárd engine plant in Hungary[2] with the introduction of the DOHC version. GM do Brasil at São José dos Campos,[3] GMDAT at Bupyeong and GM North America at Toluca also build these engines. The Family II units, by contrast were manufactured by Holden in Australia.

Design

The Family 1 engines are inline-four cylinder engines with belt-driven single or double overhead camshafts in an aluminum cylinder head with a cast iron engine block. GM do Brasil versions were also capable of running on ethanol. These engines share their basic design with the larger Family II engine – for this reason some consider the Family I and Family II to be the same series and instead use the terms 'small block' and 'large block' to distinguish between the two. Over the years there has been overlap between the two types as the smallest capacities of the Family II have also been manufactured with larger capacity versions of the Family I block.

Early build versions of the engine gained a notorious reputation for camshaft and follower failure – this was largely due to a special lubricant being used in the engine during the running in period, which would be changed for conventional oil at the first service. Many owners (familiar with the servicing requirements of the older overhead valve units that the Family I/II replaced) would often exacerbate the problem by changing the oil themselves within the running in period. Opel solved the problem by improving the metallurgy of the camshaft and followers, and changing the lubrication specification. Another issue (also common to the Family II),revolved around the water pump, which sits in an eccentric shaped housing and doubles as the timing belt tensioner. If poor quality antifreeze (or if no antifreeze was used), corrosion would jam the water pump in its housing making it impossible to tension the belt. Later versions of the engine incorporate a separate tensioning/jockey pulley for tensioning the belt.

GM do Brasil specializes in SOHC, petrol-powered and FlexPower (powered with ethanol and/or petrol, mixed in any percentage) engines. GM Brasil also made 16-valve versions of the 1.0 engine. The 1.0 L 16v was available in the Corsa line-up from 1999 to 2001.

More information Opel engine codes explained, 1. = Emissions controls ...

SOHC

Quick Facts SOHC, Overview ...

the first versions of the Family I appeared in the Opel Kadett D in 1979, and the corresponding Vauxhall Astra Mk.1 in the spring of 1980.

1.0

The 999 cc (61.0 cu in) version has a 71.1 mm (2.80 in) bore and a 62.9 mm (2.48 in) stroke.

More information Engine, Power ...

1.2

There are two iterations of the 1.2-liter Family 1 engine. As originally introduced it was called the 12ST (also A12ST and S12ST in versions for the Austrian, Swiss, and Swedish markets), it used a 77.8 mm (3.06 in) bore and a 62.9 mm (2.48 in) stroke to produce a displacement of 1,196 cc (73.0 cu in). This version, only carburetted, was used in the Opel Corsa.[4] In around 1990 a new, version with 72.0 mm × 73.4 mm (2.83 in × 2.89 in) bore and stroke, a narrower bore version of the existing 1.3-litre version, displacing 1,195 cc (72.9 cu in), replaced the original design. This was also available with single-point fuel injection and with catalytic converters.

More information Engine, Power ...

1.3

The 1,297 cc (79.1 cu in) version has a 75.0 mm (2.95 in) bore and a 73.4 mm (2.89 in) stroke.

More information Engine, Power ...

1.4

The 1,389 cc (84.8 cu in) version has a 77.6 mm (3.06 in) bore and a 73.4 mm (2.89 in) stroke.

More information Engine, Power ...

1.6

The 1,598 cc (97.5 cu in) version has a 79.0 mm (3.11 in) bore and an 81.5 mm (3.21 in) stroke.

More information Engine, Power ...

1.8

The 1,796 cc (109.6 cu in) version has an 80.5 mm (3.17 in) bore and an 88.2 mm (3.47 in) stroke.

More information Engine, Power ...

Applications:

SPE / 4

The SPE / 4 or (Smart Performance Economy 4 cylinders) engines are an evolution of the Econo.Flex engines that were made in Brazil at the Joinville plant. There are two available displacements: 1.0 L and 1.4 L. They feature an SOHC head with 2-valves per cylinder, and is fed by a multi-point fuel injection system, which allows it to run on either E100 (pure ethanol) or E25 gasoline (standard in Brazil). Major differences between previous engines include reduced friction, lowered weight, individual coil-near-plug ignition, and a new cylinder head design.

More information Name, Displacement ...

DOHC

Quick Facts DOHC, Overview ...

Pre-Ecotec

This was the first engine in this family, featuring a Lotus-developed 16-valve cylinder head and a cast-iron cylinder block which was essentially the same as in Opel's 8-valve engines. C16XE was available only in Corsa GSi, model years 1993 and 1994. C16XE was not yet badged Ecotec, and for later model Corsas and Opel Tigras it was replaced with X16XE Ecotec engine. The main difference between C16XE and X16XE Ecotec is emission control, C16XE lacks EGR and AIR-system, although the cylinder head is designed to enable these features. Other differences between C16XE and later versions of the engine include intake manifold, C16XE has a plastic upper intake manifold, which was replaced with a cast aluminium manifold, and fuel injection system, C16XE uses Multec fuel injection with MAF sensor and later models used Multec fuel injection with MAP sensor. Also, while C16XE had its own exhaust front section design, for X16XE it was replaced with a front section used also in Opel Astra, probably as a cost-saving measure.

More information Name, Displacement ...

Applications:

Ecotec

The first generation Ecotec engines are belt-driven 16-valve DOHC engines, with cast-iron cylinder blocks and aluminum cross-flow cylinder heads. They feature sodium-filled exhaust valves, a cast steel crankshaft, and a spheroidal graphite flywheel. They also feature exhaust gas recirculation (EGR), secondary air injection, and Multec M engine control with sequential multiport fuel injection. The 1.6 L version was also exported for use in the Brazilian Corsa GSi.

More information Name, Displacement ...

Applications:

Electronic throttle

Updated version introduced from 2000, with lighter cast-iron cylinder block and camshaft driven by toothed belt. Features EGR valve and electronic throttle for reduced emissions.

More information Name, Displacement ...

Ecotec TwinPort Family 1 engine (Z16XEP) is used in:

E-TEC

Quick Facts E-TEC, Overview ...

Daewoo Motors licensed and produced a variant of the Family 1 engine. These engines were built exclusively at Bupyeong engine plant and marketed as E-TEC. Like all Family 1 engines they feature a toothed belt driven valvetrain, a cast-iron engine block and an aluminum cylinder head. Most models feature Euro III-compliancy, and the 1.4 L (1399 cc) and 1.6 L (1598cc) versions employ variable intake geometry. With the release of Chevrolet Cruze, the factory has been converted to produce the Ecotec Family 1 Gen III block.

SOHC

More information Name, Displacement ...

Applications:

DOHC

The E-TEC II 16V is an updated version of the E-TEC engines with DOHC.

More information Name, Displacement ...

Applications:

Generation III

Quick Facts Generation III, Overview ...

The new Generation III or Gen III engine entered production in Spring 2005. These engines replaced both the previous generation Ecotec engines as well as Daewoo's E-TEC 16V engines. These engines are manufactured at Szentgotthárd, Hungary, Bupyeoung, Korea, Toluca, Mexico and Yantai, PRC (SGM).

In contrast to their predecessors, the Gen III engines feature lighter cast-iron blocks, as well as higher compression ratios. These engines also implement DCVCP (Double Continuous Variable Cam Phasing technology, a variant of VVT), piston cooling by oil jets, and an integrated catalytic converter. Non-turbocharged variants feature the TwinPort (Variable-length intake manifold) technology. Reliability improvements include a wider camshaft drive belt, and a water pump no longer driven by it.

The LDE engine meets Euro VI and KULEV emission standards. With the addition of secondary air injection to the LUW engine, the LWE achieves PZEV status.

These engines, like their DOHC predecessors, feature bucket tappets in contrast to the roller finger followers found on GM's other 4-cylinder engines.

More information Name, Displacement ...

Applications:

Turbocharged Gen III engines are used in:


References

  1. "Werk Aspern Plant. Facts and Figures". General Motors. Retrieved 18 July 2014.
  2. "Szentgotthard Plant. Facts and Figures". Opel Media. Retrieved 28 May 2014.
  3. "São José dos Campos Industrial Complex" (PDF). GM do Brasil. p. 3. Archived from the original (PDF) on 21 March 2019.
  4. "Motoroversigt. Opel Benzin- og Diesel-motorer ('57–'86)" [Engine overview: Opel petrol and diesel engines] (PDF) (in Danish). historisk-opelklub.dk. 2011. p. 2. Retrieved 23 May 2014.

Share this article:

This article uses material from the Wikipedia article Z18XE, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.