36_Ophiuchi

36 Ophiuchi

36 Ophiuchi

Triple star system in the constellation Ophiuchus


36 Ophiuchi (or Guniibuu for component A) is a triple star system 19.5 light-years from Earth. It is in the constellation Ophiuchus.

Quick Facts Observation data Epoch J2000 Equinox J2000, Constellation ...

The primary and secondary stars (also known as HD 155886) are nearly identical orange main-sequence dwarfs of spectral type K2/K1. This binary is unusual because its eruptions do not seem to conform to the Waldmeier effect; that is, the strongest eruptions of HD 155886 are not the ones characterized by the fast eruption onset.[10] The tertiary star is an orange main-sequence dwarf of spectral type K5.

Star C is separated from the A-B pair by 700 arcseconds, compared to a minimum of 4.6 arcseconds for A-B, so its effect on the movements of the A-B pair is small. A and B have active chromospheres. At present the distance between the stars forming the AB-pair is 5.1 arcseconds and the position angle is 139 degrees, while star C is 731.6 arcseconds away from the A-component and situated at a position angle of 74 degrees.

Nomenclature

In the beliefs of the Kamilaroi and Euahlayi Aboriginal peoples in New South Wales, Australia, the star A is called Guniibuu that represents the robin red-breast bird (Petroica boodang). In 2016, the IAU organized a Working Group on Star Names (WGSN)[11] to catalog and standardize proper names for stars. The WGSN approved the name Guniibuu for the star A on 10 August 2018 and it is now so included in the List of IAU-approved Star Names.[12]

Hunt for substellar objects

The McDonald Observatory team has set limits to the presence of one or more planets[8] around 36 Ophiuchi A with masses between 0.13 and 5.4 Jupiter masses and average separations spanning between 0.05 and 5.2 astronomical units (AU), although beyond 1.5 AU orbits are inherently unstable around either 36 Ophiuchi A or 36 Ophiuchi B.[13]

The star C (or namely HD 156026) is among five nearby paradigms as K-type stars of a type in a 'sweet spot’ between Sun-analog stars and M stars for the likelihood of evolved life, per analysis of Giada Arney from NASA's Goddard Space Flight Center.[14]

In culture

A fictional planet called Giedi Prime around 36 Ophiuchi B is in the science-fiction novel Dune the homeworld of the House of Harkonnen.

Notes

  1. From L=4πR2σTeff4, where L is the luminosity, R is the radius, Teff is the effective surface temperature and σ is the Stefan–Boltzmann constant.

References

[1]

  1. "ASAS-SN Variable Stars Database". ASAS-SN Variable Stars Database. ASAS-SN. Retrieved 6 January 2022.
  2. Demory, Brice-Olivier; Ségransan, Damien; Forveille, Thierry; Queloz, Didier; Beuzit, Jean-Luc; Delfosse, Xavier; Di Folco, Emmanuel; Kervella, Pierre; Le Bouquin, Jean-Baptiste; Perrier, Christian; Benisty, Myriam; Duvert, Gilles; Hofmann, Karl-Heinz; Lopez, Bruno; Petrov, Romain (October 2009). "Mass-radius relation of low and very low-mass stars revisited with the VLTI". Astronomy and Astrophysics. 505 (1): 205–215. arXiv:0906.0602. Bibcode:2009A&A...505..205D. doi:10.1051/0004-6361/200911976. S2CID 14786643.
  3. Taylor, B. J. (December 2005), "Statistical Cataloging of Archival Data for Luminosity Class IV-V Stars. III. The Epoch 2004 [Fe/H] and Temperature Catalogs", The Astrophysical Journal Supplement Series, 161 (2): 444–455, Bibcode:2005ApJS..161..444T, doi:10.1086/496885.Vizier catalog entry
  4. Wittenmeyer et al. (2006).
  5. Mamajek, Eric E.; Hillenbrand, Lynne A. (November 2008), "Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics", The Astrophysical Journal, 687 (2): 1264–1293, arXiv:0807.1686, Bibcode:2008ApJ...687.1264M, doi:10.1086/591785, S2CID 27151456
  6. Garg, Suyog; Karak, Bidya Binay; Egeland, Ricky; Soon, Willie; Baliunas, Sallie (2019), "Waldmeier Effect in Stellar Cycles", The Astrophysical Journal, 886 (2): 132, arXiv:1909.12148, Bibcode:2019ApJ...886..132G, doi:10.3847/1538-4357/ab4a17, S2CID 202888617
  7. "IAU Working Group on Star Names (WGSN)". Retrieved 17 September 2018.
  8. Irwin et al. (1996).
  9. Bill Steigerwald (2019-03-07). ""Goldilocks" Stars May Be "Just Right" for Finding Habitable Worlds". NASA. Retrieved 2020-05-12. 'I find that certain nearby K stars like 61 Cyg A/B, Epsilon Indi, Groombridge 1618, and HD 156026 may be particularly good targets for future biosignature searches,' said Arney.

Further reading

  • Irwin, Alan W.; Yang, Stephenson L. S. & Walker, Gordon A. H. (1996), "36 Ophiuchi AB: Incompatibility of the Orbit and Precise Radial Velocities", Publications of the Astronomical Society of the Pacific, 108: 580, Bibcode:1996PASP..108..580I, doi:10.1086/133768
  • Cayrel de Strobel, G.; Lebreton, Y.; Perrin, M.-N. & Cayrel, R. (1989), "A thorough spectroscopic study of the very nearby triple system - 36 Ophiuchi", Astronomy and Astrophysics, 225 (2): 369–380, Bibcode:1989A&A...225..369C
  • Wittenmeyer, R. A.; Endl, Michael; Cochran, William D.; Hatzes, Artie P.; Walker, G. A. H.; Yang, S. L. S. & Paulson, Diane B. (2006), "Detection Limits from the McDonald Observatory Planet Search Program", Astronomical Journal, 132 (1): 177–188, arXiv:astro-ph/0604171, Bibcode:2006AJ....132..177W, doi:10.1086/504942, S2CID 16755455
  • Barnes, Sydney A. (2007), "Ages for Illustrative Field Stars Using Gyrochronology: Viability, Limitations, and Errors", The Astrophysical Journal, 669 (2): 1167–1189, arXiv:0704.3068, Bibcode:2007ApJ...669.1167B, doi:10.1086/519295, S2CID 14614725

Share this article:

This article uses material from the Wikipedia article 36_Ophiuchi, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.