Enflurane

Enflurane

Enflurane

Chemical compound


Enflurane (2-chloro-1,1,2-trifluoroethyl difluoromethyl ether) is a halogenated ether. Developed by Ross Terrell in 1963, it was first used clinically in 1966. It was increasingly used for inhalational anesthesia during the 1970s and 1980s[2] but is no longer in common use.[3]

Quick Facts Clinical data, AHFS/Drugs.com ...

Enflurane is a structural isomer of isoflurane. It vaporizes readily, but is a liquid at room temperature.

Physical properties

More information Property, Value ...

Pharmacology

The exact mechanism of the action of general anaesthetics has not been delineated.[4] Enflurane acts as a positive allosteric modulator of the GABAA,[5][6][7][8] glycine, and 5-HT3 receptors,[9][10] and as a negative allosteric modulator of the AMPA, kainate, and NMDA receptors,[10][11][12] as well as of nicotinic acetylcholine receptors.[9]

Side effects

Clinically, enflurane produces a dose-related depression of myocardial contractility with an associated decrease in myocardial oxygen consumption. Between 2% and 5% of the inhaled dose is oxidised in the liver, producing fluoride ions and difluoromethoxy-difluoroacetic acid. This is significantly higher than the metabolism of its structural isomer isoflurane.

Enflurane also lowers the threshold for seizures, and should especially not be used on people with epilepsy.[13] Like all potent inhalation anaesthetic agents it is a known trigger of malignant hyperthermia.

Like the other potent inhalation agents it relaxes the uterus in pregnant women which is associated with more blood loss at delivery or other procedures on the gravid uterus.

The obsolete (as an anaesthetic) agent methoxyflurane had a nephrotoxic effect and caused acute kidney injury, usually attributed to the liberation of fluoride ions from its metabolism. Enflurane is similarly metabolised but the liberation of fluoride results in a lower plasma level and enflurane related kidney failure seemed unusual if seen at all.[14]

Occupational safety

The U.S. National Institute for Occupational Safety and Health (NIOSH) has set a recommended exposure limit (REL) for exposure to waste anaesthetic gas of 2 ppm (15.1 mg/m3) over a 60-minute period. Symptoms of occupational exposure to enflurane include eye irritation, central nervous system depression, analgesia, anesthesia, convulsions, and respiratory depression.[15]


References

  1. Anvisa (2023-03-31). "RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Diário Oficial da União (published 2023-04-04). Archived from the original on 2023-08-03. Retrieved 2023-08-16.
  2. Niedermeyer E, Lopes da Silva FH (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins. p. 1156. ISBN 978-0-7817-5126-1.
  3. Hemmings Jr HC, Egan TD (2013). Pharmacology and Physiology for Anesthesia. doi:10.1016/C2009-0-41712-4. ISBN 9781437716795.
  4. Perkins B (7 February 2005). "How does anesthesia work?". Scientific American.
  5. Wakamori M, Ikemoto Y, Akaike N (December 1991). "Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat". Journal of Neurophysiology. 66 (6): 2014–2021. doi:10.1152/jn.1991.66.6.2014. PMID 1667416.
  6. Lin LH, Chen LL, Zirrolli JA, Harris RA (November 1992). "General anesthetics potentiate gamma-aminobutyric acid actions on gamma-aminobutyric acidA receptors expressed by Xenopus oocytes: lack of involvement of intracellular calcium". The Journal of Pharmacology and Experimental Therapeutics. 263 (2): 569–578. PMID 1331405.
  7. Perry EK, Ashton H, Young AH (2002). Neurochemistry of Consciousness: Neurotransmitters in Mind. John Benjamins Publishing. pp. 154–. ISBN 978-1-58811-124-1.
  8. Cote CJ, Lerman J, Anderson BJ (2013). A Practice of Anesthesia for Infants and Children: Expert Consult - Online and Print. Elsevier Health Sciences. pp. 499–. ISBN 978-1-4377-2792-0.
  9. Barash P, Cullen BF, Stoelting RK, Cahalan M, Stock CM, Ortega R (7 February 2013). Clinical Anesthesia, 7e: Print + Ebook with Multimedia. Lippincott Williams & Wilkins. pp. 116–. ISBN 978-1-4698-3027-8.
  10. Khankhanian P, Himmelstein D (April 2004). "Enflurane has established ictogenic properties?". Thinklab. doi:10.15363/thinklab.d224. Archived from the original on October 18, 2016. Retrieved October 17, 2016.
  11. Morgan GE, Mikhail MS, Murray MJ, Larson CP (September 2006). Clinical Anesthesiology (3rd ed.). New York: Lange Medical Books/McGraw-Hill. p. 142.

Share this article:

This article uses material from the Wikipedia article Enflurane, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.