Handgrip_maneuver

Handgrip maneuver

Handgrip maneuver

Performed by clenching one's fist forcefully for a sustained time until fatigued


The handgrip maneuver is performed by clenching one's fist forcefully for a sustained time until fatigued. Variations include squeezing an item such as a rolled up washcloth.[citation needed]

Physiological response

The handgrip maneuver increases afterload[1] by squeezing the arterioles and increasing total peripheral resistance.[2]

Cardiology

Since increasing afterload will prevent blood from flowing in a normal forward path, it will increase any murmurs that are due to backwards flowing blood.[3] This includes aortic regurgitation (AR), mitral regurgitation (MR), and a ventricular septal defect (VSD).[4]

Mitral valve prolapse: The click and the murmur of mitral valve prolapse are delayed because left atrial volume also increases due to mitral regurgitation along with increased left ventricular volume.[5]

Murmurs that are due to forward flowing of blood such as aortic stenosis, and hypertrophic cardiomyopathy decrease in intensity.[4]

The effect of reducing the intensity in forward flowing murmurs is much more evident in aortic stenosis rather than mitral stenosis. The reason for this is that there is a larger pressure gradient across the aortic valve.[6] A complementary maneuver for differentiating disorders is the Valsalva maneuver, which decreases preload.[7]

More information Handgripping maneuver, Cardiac Finding ...

See also


References

  1. Thomas, Seth L.; Heaton, Joseph; Makaryus, Amgad N. (2023), "Physiology, Cardiovascular Murmurs", StatPearls, Treasure Island (FL): StatPearls Publishing, PMID 30247833, retrieved October 26, 2023
  2. Chirinos, Julio A; Segers, Patrick; Raina, Amresh; Saif, Hassam; Swillens, Abigail; Gupta, Amit K; Townsend, Raymond; Emmi, Anthony G; Kirkpatrick, James N; Keane, Martin G; Ferrari, Victor A; Wiegers, Susan E; St. John Sutton, Martin G (2010). "Arterial pulsatile hemodynamic load induced by isometric exercise strongly predicts left ventricular mass in hypertension". American Journal of Physiology. Heart and Circulatory Physiology. 298 (2): H320–H330. doi:10.1152/ajpheart.00334.2009. PMID 19966060. S2CID 1191870.
  3. McCraw, D B; Siegel, W; Stonecipher, H K; Nutter, D O; Schlant, R C; Hurst, J W (1972). "Response of heart murmur intensity to isometric (handgrip) exercise". Heart. 34 (6): 605–10. doi:10.1136/hrt.34.6.605. PMC 458507. PMID 5064766.
  4. "Aortic Regurgitation". The Lecturio Medical Concept Library. October 2020. Retrieved June 29, 2021.
  5. Tanser, Paul H. (reviewed Mar 2007). "Mitral Valve Prolapse", The Merck Manuals Online Medical Library, Retrieved 2011-01-08.
  6. "Aortic Stenosis - Cardiovascular Disorders - Merck Manuals Professional Edition". June 28, 2018. Archived from the original on June 28, 2018. Retrieved August 16, 2021.
  7. Taylor, D (1996). "The Valsalva Manoeuvre: A critical review". South Pacific Underwater Medicine Society Journal. 26 (1). ISSN 0813-1988. OCLC 16986801. Archived from the original on May 8, 2008. Retrieved June 29, 2021.{{cite journal}}: CS1 maint: unfit URL (link)

Share this article:

This article uses material from the Wikipedia article Handgrip_maneuver, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.