JWH-018

JWH-018

JWH-018

Chemical compound


JWH-018 (1-pentyl-3-(1-naphthoyl)indole, NA-PIMO[3] or AM-678)[4] is an analgesic chemical from the naphthoylindole family that acts as a full agonist at both the CB1 and CB2 cannabinoid receptors, with some selectivity for CB2. It produces effects in animals similar to those of tetrahydrocannabinol (THC), a cannabinoid naturally present in cannabis, leading to its use in synthetic cannabis products that in some countries are sold legally as "incense blends".[5][6][7][8][9]

Quick Facts Clinical data, Trade names ...

As a full agonist at both the CB1 and CB2 cannabinoid receptors, this chemical compound is classified as an analgesic medication.[10] The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established in treatment of neuropathic pain, as well as cancer pain and arthritis.[10]

These compounds work by mimicking the body's naturally-produced endocannabinoid hormones such as 2-AG and anandamide (AEA), which are biologically active and can exacerbate or inhibit nerve signaling.[10] As the cause is poorly understood in chronic pain states, more research and development must be done before the therapeutic potential of this class of biologic compounds can be realized.[10]

History

John W. Huffman, an organic chemist at Clemson University, synthesized a variety of chemical compounds that affect the endocannabinoid system. JWH-018 is one of these compounds, with studies showing an affinity for the cannabinoid (CB1) receptor five times greater than that of THC. Cannabinoid receptors are found in mammalian brain and spleen tissue; however, the structural details of the active sites are currently unknown.[11]

On December 15, 2008, it was reported by German pharmaceutical companies that JWH-018 was found as one of the active components in at least three versions of the grey market drug Spice, which has been sold as an incense in a number of countries around the world since 2002.[12][13][14] An analysis of samples acquired four weeks after the German prohibition of JWH-018 took place found that the manufacturers had shortened the alkyl chain by one carbon to circumvent the ban.[15]

Pharmacology

JWH-018 is a full agonist of both the CB1 and CB2 cannabinoid receptors, with a reported binding affinity of 9.00 ± 5.00 nM at CB1 and 2.94 ± 2.65 nM at CB2.[6] JWH-018 has an EC50 of 102 nM for human CB1 receptors, and 133 nM for human CB2 receptors.[16] JWH-018 produces bradycardia and hypothermia in rats at doses of 0.3–3 mg/kg, suggesting potent cannabinoid-like activity.[16]

Pharmacokinetics

Metabolism of JWH-018 was assessed using Wistar rats which had been administered an ethanolic extract containing JWH-018. Urine was collected for 24 hours, followed by extraction of JWH-018 metabolites using both liquid-liquid extraction and solid-phase extraction. GC-MS was utilized to separate and identify the extracted compounds. JWH-018 and its N-dealkylated metabolite were only detected in small amounts, with hydroxylated N-dealkylated metabolites comprising the primary signal. The observed mass shift indicates that it is likely that hydroxylation occurs in both the naphthalene and indole portions of the molecule.[17] Human metabolites were similar although most metabolism took place on the indole ring and pentyl side chain, and the hydroxylated metabolites were extensively conjugated with glucuronide.[18]

Usage

At least one case of JWH-018 dependence has been reported by the media.[5] The user consumed JWH-018 daily for eight months. Withdrawal symptoms were more severe than those experienced as a result of cannabis dependence. JWH-018 has been shown to cause profound changes in CB1 receptor density following administration, causing desensitization to its effects more rapidly than related cannabinoids.[9]

On October 15, 2011, Anderson County coroner Greg Shore attributed the death of a South Carolina college basketball player to "drug toxicity and organ failure" caused by JWH-018.[19] A November 2011 email concerning the case was released in December 2011 under the Freedom of Information Act after multiple requests to see the information had been denied.[20]

Compared to THC, which is a partial agonist at CB1 receptors, JWH-018, and many synthetic cannabinoids, are full agonists. THC has been shown to inhibit GABA receptor neurotransmission in the brain via several pathways.[21][22] JWH-018 may cause intense anxiety, agitation, and, in rare cases (generally with non-regular JWH users), has been assumed to have been the cause of seizures and convulsions by inhibiting GABA neurotransmission more effectively than THC. Cannabinoid receptor full agonists may present serious dangers to the user when used to excess.[23]

Various physical and psychological adverse effects have been reported from JWH-018 use. One study reported psychotic relapses and anxiety symptoms in well-treated patients with mental illness following JWH-018 inhalation.[24] Due to concerns about the potential of JWH-018 and other synthetic cannabinoids to cause psychosis in vulnerable individuals, it has been recommended that people with risk factors for psychotic illnesses (like a past or family history of psychosis) not use these substances.[25]

Detection in biological fluids

JWH-018 usage is readily detected in urine using "spice" screening immunoassays from several manufacturers focused on both the parent drug and its omega-hydroxy and carboxyl metabolites.[26] JWH-018 will not be detected by older methods employed for detecting THC and other cannabis terpenoids. Determination of the parent drug in serum or its metabolites in urine has been accomplished by GC-MS or LC-MS. Serum JWH-018 concentrations are generally in the 1–10 μg/L range during the first few hours after recreational usage. The major urinary metabolite is a compound that is monohydroxylated on the omega minus one carbon atom of the alkyl side chain. A lesser metabolite monohydroxylated on the omega (terminal) position was present in the urine of six users of the drug at concentrations of 6–50 μg/L, primarily as a glucuronide conjugate.[27][28][29][30][31][32][33][34][35]

JWH-018 powder as it was commonly sold online
More information Country, Date of ban ...

Synthesis

Synthesis of JWH-018.[60]

See also


References

  1. "RDC Nº 804 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial" [Collegiate Board Resolution No. 804 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control] (in Brazilian Portuguese). Brazilian Health Regulatory Agency (published 25 July 2023). 24 July 2023. Archived from the original on 27 August 2023. Retrieved 27 August 2023.
  2. "Substance Details JWH-018". Retrieved 22 January 2024.
  3. Pulver B, Fischmann S, Gallegos A, Christie R (March 2023). "EMCDDA framework and practical guidance for naming synthetic cannabinoids". Drug Testing and Analysis. 15 (3): 255–276. doi:10.1002/dta.3403. PMID 36346325.
  4. Zimmermann US, Winkelmann PR, Pilhatsch M, Nees JA, Spanagel R, Schulz K (2009). "Withdrawal Phenomena and Dependence Syndrome After the Consumption of "Spice Gold"". Dtsch Ärztebl Int. 106 (27): 464–467. doi:10.3238/arztebl.2009.0464. PMC 2719097. PMID 19652769.
  5. Aung MM, Griffin G, Huffman JW, Wu M, Keel C, Yang B, et al. (2000). "Influence of the N-1 alkyl chain length of cannabimimetic indoles upon CB1 and CB2 receptor binding" (PDF). Drug and Alcohol Dependence. 60 (2): 133–140. doi:10.1016/S0376-8716(99)00152-0. PMID 10940540. Archived from the original (PDF) on 6 March 2016.
  6. US patent 6900236, Alexandros Makriyannis, Hongfeng Deng, "Cannabimimetic indole derivatives", issued 2005-05-31
  7. US patent 7241799, Alexandros Makriyannis, Hongfeng Deng, "Cannabimimetic indole derivatives", issued 2007-07-10
  8. Atwood BK, Huffman J, Straiker A, Mackie K (June 2010). "JWH018, a common constituent of 'Spice' herbal blends, is a potent and efficacious cannabinoid CB receptor agonist". British Journal of Pharmacology. 160 (3): 585–593. doi:10.1111/j.1476-5381.2009.00582.x. PMC 2931559. PMID 20100276.
  9. Rani Sagar D, Burston JJ, Woodhams SG, Chapman V (December 2012). "Dynamic changes to the endocannabinoid system in models of chronic pain". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 367 (1607): 3300–11. doi:10.1098/rstb.2011.0390. PMC 3481532. PMID 23108548.
  10. "Clemson University :: Department of Chemistry". Clemson.edu. Archived from the original on 22 August 2010. Retrieved 23 August 2010.
  11. "Gefährlicher Kick mit Spice" [Dangerous Kick with Spice] (in German). Archived from the original on 16 March 2010.
  12. "Spice enthält chemischen Wirkstoff". Badische Zeitung (in German). 15 December 2008. Retrieved 14 January 2024.
  13. Lindigkeit R, Boehme A, Eiserloh I, Luebbecke M, Wiggermann M, Ernst L, et al. (2009). "Spice: A never ending story?". Forensic Science International. 191 (1): 58–63. doi:10.1016/j.forsciint.2009.06.008. PMID 19589652.
  14. Banister SD, Stuart J, Kevin RC, Edington A, Longworth M, Wilkinson SM, et al. (August 2015). "Effects of bioisosteric fluorine in synthetic cannabinoid designer drugs JWH-018, AM-2201, UR-144, XLR-11, PB-22, 5F-PB-22, APICA, and STS-135". ACS Chemical Neuroscience. 6 (8): 1445–58. doi:10.1021/acschemneuro.5b00107. PMID 25921407.
  15. Kraemer T, Meyer M, Wissenbach D, Rust K, Bregel D, Hopf M, et al. (2009). "Studies on the metabolism of JWH-018, the pharmacologically active ingredient of different misused incenses" (PDF). Toxichem+ Krimtech. 76 (2): 90–91. Retrieved 8 September 2017.
  16. Sobolevsky T, Prasolov I, Rodchenkov G (July 2010). "Detection of JWH-018 metabolites in smoking mixture post-administration urine". Forensic Science International. 200 (1–3): 141–7. doi:10.1016/j.forsciint.2010.04.003. PMID 20430547.
  17. "Coroner: Synthetic Pot Killed College Athlete". wyff4.com. 14 October 2011. Archived from the original on 17 October 2011. Retrieved 22 December 2011.
  18. Mayo N (16 December 2011). "City Releases Email in Lamar Jacks Case". independentmail.com. Retrieved 22 December 2011.
  19. European Monitoring Centre for Drugs and Drug Addiction. (2009). Understanding the Spice Phenomenon (PDF). EMCDDA 2009 Thematic paper. European Monitoring Centre for Drugs and Drug Addiction. doi:10.2810/27063. ISBN 978-92-9168-411-3. Archived from the original (PDF) on 8 April 2010.
  20. Every-Palmer S (September 2011). "Synthetic cannabinoid JWH-018 and psychosis: an explorative study". Drug and Alcohol Dependence. 117 (2–3): 152–157. doi:10.1016/j.drugalcdep.2011.01.012. PMID 21316162.
  21. Arntson A, Ofsa B, Lancaster D, Simon JR, McMullin M, Logan B (June 2013). "Validation of a novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens". Journal of Analytical Toxicology. 37 (5): 284–290. doi:10.1093/jat/bkt024. PMID 23625703.
  22. Möller I, et al. Screening for the synthetic cannabinoid JWH-018 and its major metabolites in human doping controls. Drug Test. Anal. Sep 24, 2010. [Epub ahead of print]
  23. Teske J, et al. Sensitive and rapid quantification of the cannabinoid receptor agonist naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in human serum by liquid chromatography-tandem mass spectrometry. J Chrom. B 878: 2659-2663, 2010.
  24. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009). "'Spice' and other herbal blends: harmless incense or cannabinoid designer drugs?". Journal of Mass Spectrometry. 44 (5): 832–837. Bibcode:2009JMSp...44..832A. doi:10.1002/jms.1558. PMID 19189348. Free version
  25. Zimmermann US, Winkelmann PR, Pilhatsch M, Nees JA, Spanagel R, Schulz K (2009). "Withdrawal phenomena and dependence syndrome after the consumption of "spice gold"". Deutsches Ärzteblatt International. 106 (27): 464–467. doi:10.3238/arztebl.2009.0464. PMC 2719097. PMID 19652769.
  26. Sobolevsky T, Prasolov I, Rodchenkov G (2010). "Detection of JWH-018 metabolites in smoking mixture post-administration urine". Forensic Science International. 200 (1–3): 141–147. doi:10.1016/j.forsciint.2010.04.003. PMID 20430547.
  27. Beuck S, Möller I, Thomas A, Klose A, Schlörer N, Schänzer W, et al. (August 2011). "Structure characterisation of urinary metabolites of the cannabimimetic JWH-018 using chemically synthesised reference material for the support of LC-MS/MS-based drug testing". Anal Bioanal Chem. 401 (2): 493–505. doi:10.1007/s00216-011-4931-5. PMID 21455647. S2CID 33433526.
  28. Moran CL, Le VH, Chimalakonda KC, Smedley AL, Lackey FD, Owen SN, et al. (June 2011). "Quantitative measurement of JWH-018 and JWH-073 metabolites excreted in human urine". Anal. Chem. 83 (11): 4228–36. doi:10.1021/ac2005636. PMC 3105467. PMID 21506519.
  29. Logan BK, et al. Identification of primary JWH-018 and JWH-073 metabolites in human urine. NMS Labs Technical Bulletin, May 25, 2011. http://toxwiki.wikispaces.com/file/view/JWH_metabolites_Technical_Bulletin_Final_v1.1.pdf
  30. R. Baselt, Disposition of Toxic Drugs and Chemicals in Man, 10th edition, Biomedical Publications, Seal Beach, CA, 2014, p. 1863.
  31. Poisons Standard comlaw.gov.au October 2015
  32. "EMCDDA | Drug profile: Synthetic cannabinoids and 'Spice'". Emcdda.europa.eu. 17 August 2010. Retrieved 23 August 2010.
  33. "Arrêté du 22 février 1990 fixant la liste des substances classées comme stupéfiants" [Order of February 22, 1990 establishing the list of substances classified as narcotics] (PDF). Agence française de sécurité sanitaire des produits de santé (AFSSAPS) French agency for the safety of health products (in French). Archived from the original (PDF) on 20 July 2011. Retrieved 9 August 2010.
  34. "Many head shop products banned". Irish Times. Archived from the original on 7 March 2013.
  35. "Spice, N-joy e mefedrone da oggi stupefacenti". politicheantidroga.it (in Italian). Archived from the original on 22 July 2011.
  36. 麻薬の新規指定について (in Japanese). MHLW. Retrieved 30 November 2016.
  37. "Japan to Ban New Synthetic Drugs". StoptheDragWar.org. Retrieved 30 November 2016.
  38. "Anti-narcotics". Archived from the original on 21 September 2014. Retrieved 2 September 2014.
  39. "What they are". Archived from the original on 21 September 2015. Retrieved 18 July 2015.
  40. "Forskrift om endring i forskrift om narkotika m.v. (Narkotikalisten)". lovdata.no (in Norwegian). Retrieved 14 January 2024.
  41. "1일부터 '5-메오-밉트' 등 향정신성의약품 지정" (in Korean). hkn24.com. 2 July 2009. Retrieved 18 February 2010.
  42. "Regeringen förbjuder nätdrogen "Spice"" (in Swedish). Archived from the original on 10 September 2010. Retrieved 19 June 2010.
  43. "Illicit Drug Report of Turkey 2010" (PDF) (in Turkish). Department of Anti-smuggling and Organised Crime. Archived from the original (PDF) on 16 December 2011. Retrieved 3 May 2012.
  44. "Decision of the Council of Ministers, Enactment 2011/1310" (in Turkish). General Directorate of Legislation Development and Publication. Retrieved 3 May 2012.
  45. "Attachment to Enactment 2012/2861" (PDF) (in Turkish). General Directorate of Legislation Development and Publication. Retrieved 3 May 2012.
  46. "Decision of the Council of Ministers, Enactment 2012/2861" (in Turkish). General Directorate of Legislation Development and Publication. Retrieved 3 May 2012.
  47. Ford R (23 December 2009). "Three legal highs banned after deaths linked to the drugs". The Times. London. Retrieved 7 May 2010.
  48. "Schedules of Controlled Substances: Temporary Placement of Four Synthetic Cannabinoids Into Schedule I". DEA Office of Diversion Control. Archived from the original on 28 February 2014. Retrieved 11 March 2014.
  49. Appendino G, Minassi A, Taglialatela-Scafati O (2014). "Recreational drug discovery: natural products as lead structures for the synthesis of smart drugs". Natural Product Reports. 31 (7): 880–904. doi:10.1039/c4np00010b. PMID 24823967.

Further reading

  • De Luca MA, Bimpisidis Z, Melis M, Marti M, Caboni P, Valentini V, et al. (December 2015). "Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid". Neuropharmacology. 99: 705–14. doi:10.1016/j.neuropharm.2015.08.041. hdl:11392/2330864. PMID 26327678.

Share this article:

This article uses material from the Wikipedia article JWH-018, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.