Spinal_muscular_atrophies

Spinal muscular atrophies

Spinal muscular atrophies

Group of disorders


Spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of rare debilitating disorders characterised by the degeneration of lower motor neurons (neuronal cells situated in the anterior horn of the spinal cord) and subsequent atrophy (wasting) of various muscle groups in the body.[1] While some SMAs lead to early infant death, other diseases of this group permit normal adult life with only mild weakness.

Quick Facts Specialty, Symptoms ...

Classification

Based on the type of muscles affected, spinal muscular atrophies can be divided into:[citation needed]

When taking into account prevalence, spinal muscular atrophies are traditionally divided into:[citation needed]

  • Autosomal recessive proximal spinal muscular atrophy, responsible for 90-95% of cases and usually called simply spinal muscular atrophy (SMA) – a disorder associated with a genetic mutation on the SMN1 gene on chromosome 5q (locus 5q13), diagnosed predominantly in young children and in its most severe form being the most common genetic cause of infant death if left untreated;
  • Localised spinal muscular atrophies – much more rare conditions, in some instances described in but a few patients in the world, which are associated with mutations of genes other than SMN1 and for this reason sometimes termed simply non-5q spinal muscular atrophies; none has currently a causal treatment.

A more detailed classification is based on the gene associated with the condition (where identified) and is presented in table below.

More information Group, Name Alternative names ...

In all forms of SMA (with an exception of X-linked spinal muscular atrophy type 1), only motor neurons, located at the anterior horn of spinal cord, are affected; sensory neurons, which are located at the posterior horn of spinal cord, are not affected. By contrast, hereditary disorders that cause both weakness due to motor denervation along with sensory impairment due to sensory denervation are known as hereditary motor and sensory neuropathies (HMSN).[citation needed]

See also


References

  1. "Spinal muscular atrophy". Genetics Home Reference. 2016-03-21. Retrieved 2016-03-26.
  2. Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, et al. (March 2016). "Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures". American Journal of Human Genetics. 98 (3): 473–489. doi:10.1016/j.ajhg.2016.01.006. PMC 4800037. PMID 26924529.
  3. Oliveira J, Martins M, Pinto Leite R, Sousa M, Santos R (October 2017). "The new neuromuscular disease related with defects in the ASC-1 complex: report of a second case confirms ASCC1 involvement". Clinical Genetics. 92 (4): 434–439. doi:10.1111/cge.12997. PMID 28218388. S2CID 28768062.
  4. Giuffrida MG, Mastromoro G, Guida V, Truglio M, Fabbretti M, Torres B, et al. (December 2019). "A new case of SMABF2 diagnosed in stillbirth expands the prenatal presentation and mutational spectrum of ASCC1". American Journal of Medical Genetics. Part A. 182 (3): 508–512. doi:10.1002/ajmg.a.61431. PMID 31880396. S2CID 209490732.

Further reading


Share this article:

This article uses material from the Wikipedia article Spinal_muscular_atrophies, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.