1-Naphthol

1-Naphthol

1-Naphthol

Chemical compound


1-Naphthol, or α-naphthol, is a organic compound with the formula C10H7OH. It is a fluorescent white solid. 1-Naphthol differs from its isomer 2-naphthol by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol. Both isomers are soluble in simple organic solvents. They are precursors to a variety of useful compounds.[2]

Quick Facts Names, Identifiers ...

Production

1-Naphthol is prepared by two main routes.[2] In one method, naphthalene is nitrated to give 1-nitronaphthalene, which is hydrogenated to the amine followed by hydrolysis:

C10H8 + HNO3 → C10H7NO2 + H2O
C10H7NO2 + 3H2 → C10H7NH2 + 2H2O
C10H7NH2 + H2O → C10H7OH + NH3

Alternatively, naphthalene is hydrogenated to tetralin, which is oxidized to 1-tetralone, which undergoes dehydrogenation.

Reactions

Some reactions of 1-naphthol are explicable with reference to its tautomerism, which produces a small amount of the keto tautomer.

One consequence of this tautomerism is the Bucherer reaction, the ammonolysis of 1-naphthol to give 1-aminonaphthalene.

1-Naphthol biodegrades via formation of 1-naphthol-3,4-oxide, which converts to 1,4-naphthoquinone.[3]

The 4-position of 1-naphthol is susceptible to electrophilic attack. This regioselective reaction is exploited in the preparation of diazo dyes, which are form using diazonium salts. Reduction of the diazo derivatives gives 4-amino-1-naphthol.[4][5]

Partial reduction of 1-naphthol gives the tetrahydro derivative, leaving intact the phenol ring.[6] Full hydrogenation is catalyzed by rhodium.[7]

Applications and occurrence

1-Naphthol is a precursor to a variety of insecticides including carbaryl and pharmaceuticals including nadolol[8][9] as well as for the antidepressant sertraline[10] and the anti-protozoan therapeutic atovaquone.[11] It undergoes azo coupling to give various azo dyes, but these are generally less useful than those derived from 2-naphthol.[2][12]

1-Naphthol is a metabolite of the insecticide carbaryl and naphthalene. Along with TCPy, it has been shown to decrease testosterone levels in adult men.[13]

Other uses

1-Naphthol is used in each of the following chemical tests, which predate the use of spectroscopic and chromatographic methods:

Safety

1-Naphthol has been described as "moderately toxic.[2]


References

  1. "1-Naphthol". pubchem.ncbi.nlm.nih.gov.
  2. Booth, Gerald (2005). "Naphthalene Derivatives". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_009. ISBN 978-3527306732.. full-text PDF
  3. Yoshito Kumagai; Yasuhiro Shinkai; Takashi Miura; Arthur K. Cho (2011). "The Chemical Biology of Naphthoquinones and Its Environmental Implications". Annual Review of Pharmacology and Toxicology. 52: 221–47. doi:10.1146/annurev-pharmtox-010611-134517. PMID 21942631.
  4. J. B. Conant; R. E. Lutz; B. B. Corson (1923). "1,4-Aminonaphthol Hydrochloride". Organic Syntheses. 3: 7. doi:10.15227/orgsyn.003.0007.
  5. Louis F. Fieser (1937). "1,2-Aminonaphthol Hydrochloride". Organic Syntheses. 17: 9. doi:10.15227/orgsyn.017.0009.
  6. C. David Gutsche; Hugo H. Peter (1957). "Ar-Tetrahydro-a-Naphthol". Organic Syntheses. 37: 80. doi:10.15227/orgsyn.037.0080.
  7. A. I. Meyers; W. N. Beverung; R. Gault (1971). "Hydrogenation of Aromatic Nuclei: 1-Decalol". Organic Syntheses. 51: 103. doi:10.15227/orgsyn.051.0103.
  8. M.E. Condon; et al. (1978). "Nondepressant β-adrenergic blocking agents. 1. Substituted 3-amino-1-(5,6,7,8-tetrahydro-1-naphthoxy)-2-propanols". Journal of Medicinal Chemistry (in German). 21 (9): 913–922. doi:10.1021/jm00207a014. PMID 31485.
  9. DE 2258995, F.R. Hauck, C.M. Cimarusti, V.L. Narayan, "2,3-cis-1,2,3,4-Tetrahydro-5[2-hydroxy-3-(tert.-butylamino)-propoxy]-2,3-naphthalindiol", published 1973-06-07, assigned to E.R. Squibb & Sons, Inc.
  10. K. Vukics; T. Fodor; J. Fischer; I. Fellevári; S. Lévai (2002), "Improved industrial synthesis of antidepressant Sertraline", Org. Process Res. Dev. (in German), vol. 6, no. 1, pp. 82–85, doi:10.1021/op0100549
  11. B.N. Roy; G.P. Singh; P.S. Lathi; M.K. Agarwal (2013). "A novel process for synthesis of Atovaquone" (PDF). Indian J. Chem. (in German). 52B: 1299–1312. Archived from the original (PDF) on 30 May 2022.
  12. C. Kaiser; T. Jen; E. Garvey; W.D. Bowen; D.F. Colella; J.R. Wardell Jr. (1977). "Adrenergic agents. 4. Substituted phenoxypropanolamine derivatives as potential β-adrenergic agonists". Journal of Medicinal Chemistry (in German). 20 (5): 687–689. doi:10.1021/jm00215a014. PMID 16136.
  13. Meeker, John D.; Ryan, Louise; Barr, Dana B.; Hauser, Russ (January 2006). "Exposure to Nonpersistent Insecticides and Male Reproductive Hormones". Epidemiology. 17 (1): 61–68. doi:10.1097/01.ede.0000190602.14691.70. PMID 16357596. S2CID 24829926.

Share this article:

This article uses material from the Wikipedia article 1-Naphthol, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.