Arithmetic–geometric_mean

Arithmetic–geometric mean

Arithmetic–geometric mean

Mathematical function of two positive real arguments


In mathematics, the arithmetic–geometric mean (AGM or agM[1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmetic–geometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some mathematical constants, in particular, computing π.

Plot of the arithmetic–geometric mean among several generalized means.

The AGM is defined as the limit of the interdependent sequences and :

These two sequences converge to the same number, the arithmetic–geometric mean of x and y; it is denoted by M(x, y), or sometimes by agm(x, y) or AGM(x, y).

The arithmetic–geometric mean can be extended to complex numbers and when the branches of the square root are allowed to be taken inconsistently, it is, in general, a multivalued function.[1]

Example

To find the arithmetic–geometric mean of a0 = 24 and g0 = 6, iterate as follows:

The first five iterations give the following values:

More information n, an ...

The number of digits in which an and gn agree (underlined) approximately doubles with each iteration. The arithmetic–geometric mean of 24 and 6 is the common limit of these two sequences, which is approximately 13.4581714817256154207668131569743992430538388544.[2]

History

The first algorithm based on this sequence pair appeared in the works of Lagrange. Its properties were further analyzed by Gauss.[1]

Properties

The geometric mean of two positive numbers is never greater than the arithmetic mean.[3] So (gn) is an increasing sequence, (an) is a decreasing sequence, and gnM(x, y) ≤ an. These are strict inequalities if xy.

M(x, y) is thus a number between the geometric and arithmetic mean of x and y; it is also between x and y.

If r ≥ 0, then M(rx,ry) = r M(x,y).

There is an integral-form expression for M(x,y):[4]

where K(k) is the complete elliptic integral of the first kind:

Since the arithmetic–geometric process converges so quickly, it provides an efficient way to compute elliptic integrals, which are used, for example, in elliptic filter design.[5]


The arithmetic–geometric mean is connected to the Jacobi theta function by[6]

which upon setting gives

The reciprocal of the arithmetic–geometric mean of 1 and the square root of 2 is Gauss's constant.

In 1799, Gauss proved[note 1] that

where is the lemniscate constant.


In 1941, (and hence ) was proven transcendental by Theodor Schneider.[note 2][7][8] The set is algebraically independent over ,[9][10] but the set (where the prime denotes the derivative with respect to the second variable) is not algebraically independent over . In fact,[11]

The geometric–harmonic mean GH can be calculated using analogous sequences of geometric and harmonic means, and in fact GH(x,y) = 1/M(1/x, 1/y) = xy/M(x,y).[12]

The arithmetic–harmonic mean is equivalent to the geometric mean.

The arithmetic–geometric mean can be used to compute – among others – logarithms, complete and incomplete elliptic integrals of the first and second kind,[13] and Jacobi elliptic functions.[14]

Proof of existence

The inequality of arithmetic and geometric means implies that

and thus

that is, the sequence gn is nondecreasing and bounded above by the larger of x and y. By the monotone convergence theorem, the sequence is convergent, so there exists a g such that:

However, we can also see that:

and so:

Q.E.D.

Proof of the integral-form expression

This proof is given by Gauss.[1] Let

Changing the variable of integration to , where

This yields

gives

Thus, we have

The last equality comes from observing that .

Finally, we obtain the desired result

Applications

The number π

According to the Gauss–Legendre algorithm,[15]

where

with and , which can be computed without loss of precision using

Complete elliptic integral K(sinα)

Taking and yields the AGM

where K(k) is a complete elliptic integral of the first kind:

That is to say that this quarter period may be efficiently computed through the AGM,

Other applications

Using this property of the AGM along with the ascending transformations of John Landen,[16] Richard P. Brent[17] suggested the first AGM algorithms for the fast evaluation of elementary transcendental functions (ex, cos x, sin x). Subsequently, many authors went on to study the use of the AGM algorithms.[18]

See also


References

Notes

  1. By 1799, Gauss had two proofs of the theorem, but neither of them was rigorous from the modern point of view.
  2. In particular, he proved that the beta function is transcendental for all such that . The fact that is transcendental follows from

Citations

  1. Cox, David (January 1984). "The Arithmetic-Geometric Mean of Gauss". L'Enseignement Mathématique. 30 (2): 275–330.
  2. Bullen, P. S. (2003). "The Arithmetic, Geometric and Harmonic Means". Handbook of Means and Their Inequalities. Dordrecht: Springer Netherlands. pp. 60–174. doi:10.1007/978-94-017-0399-4_2. ISBN 978-90-481-6383-0. Retrieved 2023-12-11.
  3. Carson, B. C. (2010). "Elliptic Integrals". In Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.). NIST Handbook of Mathematical Functions. Cambridge University Press. ISBN 978-0-521-19225-5. MR 2723248..
  4. Dimopoulos, Hercules G. (2011). Analog Electronic Filters: Theory, Design and Synthesis. Springer. pp. 147–155. ISBN 978-94-007-2189-0.
  5. Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. pages 35, 40
  6. Schneider, Theodor (1941). "Zur Theorie der Abelschen Funktionen und Integrale". Journal für die reine und angewandte Mathematik. 183 (19): 110–128. doi:10.1515/crll.1941.183.110. S2CID 118624331.
  7. G. V. Choodnovsky: Algebraic independence of constants connected with the functions of analysis, Notices of the AMS 22, 1975, p. A-486
  8. G. V. Chudnovsky: Contributions to The Theory of Transcendental Numbers, American Mathematical Society, 1984, p. 6
  9. Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience. ISBN 0-471-83138-7. p. 45
  10. Newman, D. J. (1985). "A simplified version of the fast algorithms of Brent and Salamin". Mathematics of Computation. 44 (169): 207–210. doi:10.2307/2007804. JSTOR 2007804.
  11. Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 17". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. pp. 598–599. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
  12. Landen, John (1775). "An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom". Philosophical Transactions of the Royal Society. 65: 283–289. doi:10.1098/rstl.1775.0028. S2CID 186208828.
  13. Borwein, Jonathan M.; Borwein, Peter B. (1987). Pi and the AGM. New York: Wiley. ISBN 0-471-83138-7. MR 0877728.

Sources


Share this article:

This article uses material from the Wikipedia article Arithmetic–geometric_mean, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.