Collagen,_type_XVII,_alpha_1

Collagen, type XVII, alpha 1

Collagen, type XVII, alpha 1

Mammalian protein found in humans


Collagen XVII, previously called BP180, is a transmembrane protein which plays a critical role in maintaining the linkage between the intracellular and the extracellular structural elements involved in epidermal adhesion, identified by Diaz and colleagues in 1990.[3][4]

COL17A1 is the official name of the gene. It encodes the alpha chain of type XVII collagen. Collagen XVII is a transmembrane protein, like collagen XIII, XXIII and XXV. Collagen XVII is a structural component of hemidesmosomes, multiprotein complexes at the dermal-epidermal basement membrane zone that mediate adhesion of keratinocytes to the underlying membrane. It also appears to be a key protein in maintaining the integrity of the corneal epithelium.[5] Mutations in this gene are associated with both generalized atrophic benign and junctional epidermolysis bullosa,[6] as well as recurrent corneal erosions, and expression of this gene is abnormal in various cancers.[7] Two homotrimeric forms of type XVII collagen exist. The full length form is the transmembrane protein. A soluble form, referred to as either ectodomain or LAD-1, is generated by proteolytic processing of the full length form.[8]

Structure

Collagen XVII is a homotrimer of three alpha1(XVII)-chains [9] and a transmembrane protein in type II orientation. Each 180 kD a-chain contains a globular intracellular domain of approximately 70 kDa, which interacts with beta4-integrin, plectin, and BP230 [10][11] and is necessary for the stable attachment of hemidesmosomes to keratin intermediate filaments. The large C-terminal ectodomain with a molecular mass of approximately 120 kDa consists of 15 collagenous subdomains, characterized by typical collagenous G-X-Y repeat sequences, flanked by 16 short non-collagenous stretches. The overall structure of the ectodomain is that of a flexible, rod-like triple helix[12][13] with a significant thermal stability.[14][15] The membrane proximal part of the ectodomain, within amino acids 506-519, is responsible for binding to alpha 6 integrin, this binding seems to be important for the collagen XVII integration into hemidesmosomes [citation needed]. The largest collagenous domain, Col15, which contains 232 amino acids (amino acids 567-808), contributes significantly to stability of collagen XVII homotrimer. The C-terminus of collagen XVII binds to laminin 5, and correct integration of laminin 5 into the matrix requires collagen XVII.

Pathology

Mutations in the human collagen XVII gene, COL17A1, lead to the absence or structural alterations and mutations of collagen XVII.[16] The functional consequences include diminished epidermal adhesion and skin blistering in response to minimal shearing forces. The disorder caused by biallelic COL17A1 mutations and is called junctional epidermolysis bullosa, an autosomal recessive skin disease with variable clinical phenotypes. Morphological characteristics of junctional epidermolysis bullosa are rudimentary hemidesmosomes and subepidermal tissue separation. Clinical hallmarks, in addition to blisters and erosions of the skin and mucous membranes, include nail dystrophy, loss of hair, and dental anomalies.

Collagen XVII also plays a role as an autoantigen in Bullous pemphigoid (BP) and herpes gestationis (HG), both acquired subepithelial blistering disorders.[17][18] Most immunodominant epitopes lie within the NC16A domain,[19] and the binding of the autoantibodies perturbs adhesive functions of the collagen XVII, and this (together with inflammation-related processes) leads to epidermal-dermal separation and skin blistering.[20]

Other mutations make the epithelium of the cornea in the eye brittle, which results in dominantly inherited recurrent corneal erosion dystrophy (ERED). Whole-exome sequencing first identified a heterozygous mutation (c.2816C>T, p.T939I) that segregated with ERED in a large Swedish pedigree dating back 200 years.[21] Another synonymous mutation (c.3156C>T) was proposed to introduce a cryptic donor site, resulting in aberrant splicing, a theory which subsequently was confirmed in several families with ERED from different countries.[5][22]

Cancer

Expression of the COL17A1 gene is abnormal in various cancers.[7] For example, it was found abnormal in five epithelial cancer types, including breast cancer, cervical cancer, head and neck cancer and two types of lung cancer. Decreased expression was observed for breast cancer, while increased expression was observed for the other cancers.[7]

Shedding

Collagen XVII is constitutively shed from the keratinocyte surface within NC16A domain by TACE (TNF-Alpha Converting Enzyme), metalloproteinase of the ADAM family.[23] The shedding is lipid raft dependent.[24] Collagen XVII is extracellularly phosphorylated by ecto-casein kinase 2 within the NC16A domain, phosphorylation negatively regulates ectodomain shedding.[25]

SPARC and osteogenesis imperfecta

The SPARC gene is completely associated with homozygous mutations in collagen XVII, which in turn causes a type of osteogenesis imperfecta.[26][27]

Interactions

Collagen, type XVII, alpha 1 has been shown to interact with Keratin 18,[28] Actinin alpha 4,[29] Dystonin,[11][30] Actinin, alpha 1,[29] CTNND1[31] and ITGB4.[32][33]

See also


References

  1. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. Franzke CW, Bruckner P, Bruckner-Tuderman L (2005). "Collagenous transmembrane proteins: recent insights into biology and pathology". J. Biol. Chem. 280 (6): 4005–4008. doi:10.1074/jbc.R400034200. PMID 15561712.
  3. Diaz LA, Ratrie H, Saunders WS, Futamura S, Squiquera HL, Anhalt GJ, Giudice GJ (October 1990). "Isolation of a human epidermal cDNA corresponding to the 180-kD autoantigen recognized by bullous pemphigoid and herpes gestationis sera. Immunolocalization of this protein to the hemidesmosome". Journal of Clinical Investigation. 86 (4): 1088–1094. doi:10.1172/JCI114812. ISSN 0021-9738. PMC 296836. PMID 1698819.
  4. Oliver V, van Bysterveldt K, Cadzow M, et al. (2016). "A COL17A1 Splice-Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions". Ophthalmology. 123 (4): 709–722. doi:10.1016/j.ophtha.2015.12.008. PMID 26786512.
  5. Bardhan A, Bruckner-Tuderman L, Chapple IL, Fine JD, Harper N, Has C, Magin TM, Marinkovich MP, Marshall JF, McGrath JA, Mellerio JE (2020-09-24). "Epidermolysis bullosa". Nature Reviews Disease Primers. 6 (1): 78. doi:10.1038/s41572-020-0210-0. ISSN 2056-676X. PMID 32973163. S2CID 221861310.
  6. Thangavelu P, Krenács T, Dray E, Duijf P (2016), "In epithelial cancers, aberrant COL17A1 promoter methylation predicts its misexpression and increased invasion", Clin Epigenetics, 8: 120, doi:10.1186/s13148-016-0290-6, PMC 5116176, PMID 27891193
  7. Hirako Y, Usukura J, Uematsu J, Hashimoto T, Kitajima Y, Owaribe K (1998). "Cleavage of BP180, a 180-kDa bullous pemphigoid antigen, yields a 120-kDa collagenous extracellular polypeptide". J. Biol. Chem. 273 (16): 9711–9717. doi:10.1074/jbc.273.16.9711. PMID 9545306.
  8. Schacke H, Schumann H, Hammami-Hauasli N, Raghunath M, Bruckner-Tuderman L (1998). "Two forms of collagen XVII in keratinocytes. A full-length transmembrane protein and a soluble ectodomain". J. Biol. Chem. 273 (40): 25937–25943. doi:10.1074/jbc.273.40.25937. PMID 9748270.
  9. Areida SK, Reinhardt DP, Muller PK, Fietzek PP, Kowitz J, Marinkovich MP, Notbohm H (2001). "Properties of the collagen type XVII ectodomain. Evidence for n- to c-terminal triple helix folding". J. Biol. Chem. 276 (2): 1594–1601. doi:10.1074/jbc.M008709200. PMID 11042218.
  10. Zillikens D, Giudice GJ (1999). "BP180/type XVII collagen: its role in acquired and inherited disorders or the dermal-epidermal junction". Arch. Dermatol. Res. 291 (4): 187–194. doi:10.1007/s004030050392. PMID 10335914. S2CID 27592712.
  11. Zillikens D (1999). "Acquired skin disease of hemidesmosomes". J. Dermatol. Sci. 20 (2): 134–154. doi:10.1016/S0923-1811(99)00019-5. PMID 10379705.
  12. Diaz LA, Ratrie H, Saunders WS, Futamura S, Squiquera HL, Anhalt GJ, Giudice GJ (October 1990). "Isolation of a human epidermal cDNA corresponding to the 180-kD autoantigen recognized by bullous pemphigoid and herpes gestationis sera. Immunolocalization of this protein to the hemidesmosome". The Journal of Clinical Investigation. 86 (4): 1088–1094. doi:10.1172/JCI114812. ISSN 0021-9738. PMC 296836. PMID 1698819.
  13. Giudice GJ, Emery DJ, Zelickson BD, Anhalt GJ, Liu Z, Diaz LA (1993-11-15). "Bullous pemphigoid and herpes gestationis autoantibodies recognize a common non-collagenous site on the BP180 ectodomain". Journal of Immunology. 151 (10): 5742–5750. doi:10.4049/jimmunol.151.10.5742. ISSN 0022-1767. PMID 8228259.
  14. Liu Z, Diaz LA, Troy JL, Taylor AF, Emery DJ, Fairley JA, Giudice GJ (November 1993). "A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180". The Journal of Clinical Investigation. 92 (5): 2480–2488. doi:10.1172/JCI116856. ISSN 0021-9738. PMC 288433. PMID 7693763.
  15. Franzke CW, Tasanen K, Borradori L, Huotari V, Bruckner-Tuderman L (2004). "Shedding of collagen XVII/BP180: structural motifs influence cleavage from cell surface". J. Biol. Chem. 279 (23): 24521–24529. doi:10.1074/jbc.M308835200. PMID 15047704.
  16. Zimina EP, Bruckner-Tuderman L, Franzke C (2005). "Shedding of collagen XVII ectodomain depends on plasma membrane microenvironment". J Biol Chem. 280 (40): 34019–24. doi:10.1074/jbc.M503751200. PMID 16020548.
  17. Zimina EP, Fritsch A, Schermer B, Bakulina AY, Bashkurov M, Benzing T, Bruckner-Tuderman L (2007). "Extracellular phosphorylation of collagen XVII by ecto-casein kinase 2 inhibits ectodomain shedding". J Biol Chem. 282 (31): 22737–46. doi:10.1074/jbc.M701937200. PMID 17545155.
  18. Reference GH. "SPARC gene". Genetics Home Reference.
  19. Aho S, Uitto J (March 1999). "180-kD bullous pemphigoid antigen/type XVII collagen: tissue-specific expression and molecular interactions with keratin 18". J. Cell. Biochem. 72 (3): 356–67. doi:10.1002/(SICI)1097-4644(19990301)72:3<356::AID-JCB5>3.0.CO;2-M. ISSN 0730-2312. PMID 10022517. S2CID 30404639.
  20. Gonzalez AM, Otey C, Edlund M, Jones J C (December 2001). "Interactions of a hemidesmosome component and actinin family members". J. Cell Sci. 114 (Pt 23): 4197–206. doi:10.1242/jcs.114.23.4197. ISSN 0021-9533. PMID 11739652.
  21. Koster J, Geerts Dirk, Favre Bertrand, Borradori Luca, Sonnenberg Arnoud (January 2003). "Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly". J. Cell Sci. 116 (Pt 2): 387–99. doi:10.1242/jcs.00241. ISSN 0021-9533. PMID 12482924. S2CID 16745491.
  22. Aho S, Rothenberger K, Uitto J (June 1999). "Human p120ctn catenin: tissue-specific expression of isoforms and molecular interactions with BP180/type XVII collagen". J. Cell. Biochem. 73 (3): 390–9. doi:10.1002/(SICI)1097-4644(19990601)73:3<390::AID-JCB10>3.0.CO;2-1. ISSN 0730-2312. PMID 10321838. S2CID 43899550.
  23. Aho S, Uitto J (February 1998). "Direct interaction between the intracellular domains of bullous pemphigoid antigen 2 (BP180) and beta 4 integrin, hemidesmosomal components of basal keratinocytes". Biochem. Biophys. Res. Commun. 243 (3): 694–9. doi:10.1006/bbrc.1998.8162. ISSN 0006-291X. PMID 9500991.
  24. Schaapveld RQ, Borradori L, Geerts D, van Leusden M R, Kuikman I, Nievers M G, Niessen C M, Steenbergen R D, Snijders P J, Sonnenberg A (July 1998). "Hemidesmosome formation is initiated by the beta4 integrin subunit, requires complex formation of beta4 and HD1/plectin, and involves a direct interaction between beta4 and the bullous pemphigoid antigen 180". J. Cell Biol. 142 (1): 271–84. doi:10.1083/jcb.142.1.271. ISSN 0021-9525. PMC 2133016. PMID 9660880.

Further reading


Share this article:

This article uses material from the Wikipedia article Collagen,_type_XVII,_alpha_1, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.