GNAQ

GNAQ

GNAQ

Protein-coding gene in the species Homo sapiens


Guanine nucleotide-binding protein G(q) subunit alpha is a protein that in humans is encoded by the GNAQ gene.[5] Together with GNA11 (its paralogue), it functions as a Gq alpha subunit.[6]

Quick Facts Available structures, PDB ...

Function

Guanine nucleotide-binding proteins are a family of heterotrimeric proteins that couple cell surface, 7-transmembrane domain receptors to intracellular signaling pathways. Receptor activation catalyzes the exchange of GDP for GTP bound to the inactive G protein alpha subunit resulting in a conformational change and dissociation of the complex. The G protein alpha and beta-gamma subunits are capable of regulating various cellular effectors. Activation is terminated by a GTPase intrinsic to the G-alpha subunit. G-alpha-q is the alpha subunit of one of the heterotrimeric GTP-binding proteins that mediates stimulation of phospholipase C-beta (MIM 600230).[supplied by OMIM][7]

Mutations in this gene have been found associated to cases of Sturge–Weber syndrome and port-wine stains.[8]

Interactions

GNAQ has been shown to interact with:

See also


References

  1. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  2. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Dong Q, Shenker A, Way J, Haddad BR, Lin K, Hughes MR, McBride OW, Spiegel AM, Battey J (February 1997). "Molecular cloning of human G alpha q cDNA and chromosomal localization of the G alpha q gene (GNAQ) and a processed pseudogene". Genomics. 30 (3): 470–75. doi:10.1006/geno.1995.1267. PMID 8825633.
  4. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North PE, Marchuk DA, Comi AM, Pevsner J (May 23, 2013). "Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ". The New England Journal of Medicine. 368 (21): 1971–9. doi:10.1056/NEJMoa1213507. PMC 3749068. PMID 23656586.
  5. Day PW, Carman CV, Sterne-Marr R, Benovic JL, Wedegaertner PB (August 2003). "Differential interaction of GRK2 with members of the G alpha q family". Biochemistry. 42 (30): 9176–84. doi:10.1021/bi034442+. PMID 12885252.
  6. Druey KM, Sullivan BM, Brown D, Fischer ER, Watson N, Blumer KJ, Gerfen CR, Scheschonka A, Kehrl JH (July 1998). "Expression of GTPase-deficient Gialpha2 results in translocation of cytoplasmic RGS4 to the plasma membrane". J. Biol. Chem. 273 (29): 18405–10. doi:10.1074/jbc.273.29.18405. PMID 9660808.
  7. Klattenhoff C, Montecino M, Soto X, Guzmán L, Romo X, García MA, Mellstrom B, Naranjo JR, Hinrichs MV, Olate J (May 2003). "Human brain synembryn interacts with Gsalpha and Gqalpha and is translocated to the plasma membrane in response to isoproterenol and carbachol". J. Cell. Physiol. 195 (2): 151–7. doi:10.1002/jcp.10300. hdl:10533/174200. PMID 12652642. S2CID 84975473.
  8. Rochdi MD, Watier V, La Madeleine C, Nakata H, Kozasa T, Parent JL (October 2002). "Regulation of GTP-binding protein alpha q (Galpha q) signaling by the ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50)". J. Biol. Chem. 277 (43): 40751–9. doi:10.1074/jbc.M207910200. PMID 12193606.

Further reading


Share this article:

This article uses material from the Wikipedia article GNAQ, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.