Hydrolysis_constant

Hydrolysis constant

Hydrolysis constant

Add article description


The word hydrolysis is applied to chemical reactions in which a substance reacts with water. In organic chemistry, the products of the reaction are usually molecular, being formed by combination with H and OH groups (e.g., hydrolysis of an ester to an alcohol and a carboxylic acid). In inorganic chemistry, the word most often applies to cations forming soluble hydroxide or oxide complexes with, in some cases, the formation of hydroxide and oxide precipitates.

Metal hydrolysis and associated equilibrium constant values

The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:

p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+

and the corresponding formation constant as:

and associated equilibria can be written as:

MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O
MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH
p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O

Aluminium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Americium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, NIST46 ...

Americium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Antimony(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Antimony(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Arsenic(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Arsenic(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer ...

Barium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Berkelium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Beryllium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Bismuth

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Boron

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Cadmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Calcium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Californium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Cerium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Chromium(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):

More information Reaction, NIST46 ...

Chromium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Chromium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Cobalt(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Cobalt(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Copper(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Copper(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Curium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Dysprosium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Erbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Europium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Gadolinium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Gallium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information ...

Germanium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Gold(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Hafnium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.

Holmium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Indium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Iridium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Iron(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Iron(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Lanthanum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Lead(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Lead(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Feitknecht and Schindler, 1963 ...

Lithium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Magnesium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Manganese(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Perrin et al., 1969 ...

Manganese(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Mercury(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

(a) 0.5 M HClO4

Mercury(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Molybdenum(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):

More information Reaction, Baes and Mesmer, 1976 ...

Neodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Neptunium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Neptunium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Neptunium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Neptunium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Nickel(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Feitknecht and Schindler, 1963 ...

Niobium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Osmium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:

More information Reaction, Galbács et al., 1983 ...

Osmium(VIII)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Galbács et al., 1983 ...

(a) At I = 0.1 M (b) At I = 2.5 M

Palladium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Perrin et al., 1969 ...

Plutonium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Plutonium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Plutonium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Plutonium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Potassium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Praseodymium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Radium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Nordstrom et al., 1990 ...

Rhodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Perrin et al., 1969 ...

Samarium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Scandium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Selenium(–II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Olin et al., 2015 ...

Selenium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Selenium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Silicon

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Silver

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Sodium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Strontium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Tantalum

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(-II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Filella and May, 2019a ...

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Tellurium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Terbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Thallium(I)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thallium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.

Thorium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Thulium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Tin(II)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Feitknecht, 1963 ...

Tin(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Hummel et al., 2002 ...

Tungsten

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, NIST46 ...

Titanium(III)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Perrin et al., 1969 ...

Titanium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Uranium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Uranium(VI)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Vanadium(IV)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Brown and Ekberg, 2016 ...

Vanadium(V)

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Ytterbium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Yttrium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Zinc

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

Zirconium

Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:

More information Reaction, Baes and Mesmer, 1976 ...

*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.


References

  1. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 121.
  2. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 757–797.
  3. Hummel, W.; Thoenen, T. (2023). Technical Report 21-03. The PSI Chemical Thermodynamic Database 2020. Wettingen: NAGRA. pp. 252–259.
  4. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 407–414.
  5. Grenthe, I.; Gaona, X.; Plyasunov, A.V.; Rao, L.; Runde, W.H.; Grambow, B.; Konings, R.J.M.; Smith, A.L.; Moore, E.E. (2020). Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium (PDF). Paris: OECD Publishing.
  6. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 414.
  7. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 375.
  8. Lothenbach, B.; Ochs, M.; Wanner, H.; Yui, M. (1999). Thermodynamic Data for the Speciation and Solubility of Pd, Pb, Sn, Sb, Nb and Bi in Aqueous Solution. TN8400 99-011. Japan Nuclear Cycle Development Institute (JNC).
  9. Kitamura, A.; Fujiwara, K.; Doi, R.; Yoshida, Y.; Mihara, M.; Terashima, M.; Yui, M. (2010). JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-Level Radioactive and TRU-Wastes. Report JAEA-Data/Code 2009-024. Japan Atomic Energy Agency.
  10. Filella, M.; May, P.M. (2003). "Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters". Geochim. Cosmochim. Acta. 67: 4013–4031. doi:10.1016/S0016-7037(03)00095-4.
  11. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 370.
  12. Nordstrom, D.K.; Archer, D. (2003). Welch, AH; Stollenwerk, KG (eds.). Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Amsterdam: Kluwer Academic Publishers. pp. 1‒25. doi:10.1007/0-306-47956-7_1.
  13. Nordstrom, D.K.; Majzlan, J.; Königsberger, E. (2014). "Thermodynamic properties for As minerals & aqueous species". Reviews in Mineralogy & Geochemistry. 79: 217‒255. doi:10.2138/rmg.2014.79.4.
  14. Khodakovsky, I.L.; Ryzhenko, B.N.; Naumov, G.B. (1968). "Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution)". Geokhimiya. 12: 1486‒ 1503, 1968.
  15. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 103.
  16. Nordstrom, D.K.; Plummer, L.N.; Langmuir, D.; Busenberg, E.; May, H.M.; Jones, B.F.; Parkhurst, D.L. (1990). Melchior, D.C.; Basset, R.L. (eds.). Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Chemical Modeling of Aqueous Systems II. Washington, DC: ACS. pp. 398–446.
  17. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. New York: Wiley. pp. 213–217.
  18. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 419–422.
  19. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 95.
  20. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 383.
  21. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 874–884.
  22. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 111.
  23. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 301.
  24. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2011). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 83: 1163–1214. doi:10.1351/PAC-REP-10-08-09.
  25. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 730–738.
  26. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 195–210.
  27. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  28. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  29. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 220.
  30. Rai, D.; Sass, B.M.; Moore, D.A. (1987). "Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide". Inorg. Chem. 26: 345–349.
  31. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 541–555.
  32. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 216.
  33. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 241.
  34. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 620–628.
  35. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 628−632.
  36. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 650–702.
  37. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 274.
  38. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanne, H. "Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+ + OH, Cl, CO32–, SO42–, and PO43– systems". Pure Appl. Chem. 79: 895–950 via 2007.
  39. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 415−420.
  40. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 290−292.
  41. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 295−297.
  42. Hummel, W.; Berner, U.; Curti, E.; Pearson, F.J.; Thoenen, T. (2002). TECHNICAL REPORT 02-16. Nagra/ PSI Chemical Thermodynamic Data Base 01/01.
  43. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  44. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 284–287.
  45. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 319.
  46. Smith, R.M.; Martell, A.E.; Motekaitis, R.J. (2003). NIST Critically Selected Stability Constants of Metal Complexes Database, Version 7.0, NIST Standard Reference Database 46. Gaithersburg, MD, USA: National Institute of Standards, U.S. Dept. of Commerce.
  47. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 797–812.
  48. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 349.
  49. Wood, S.A.; Samson, I.M. (2006). "The aqueous geochemistry of gallium, germanium, indium and scandium". Ore Geol. Rev. 28 via 57–102.
  50. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 279–285.
  51. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 158.
  52. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 460–463.
  53. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 293−295.
  54. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 327.
  55. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 812–817.
  56. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 736‒739.
  57. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 235.
  58. Lemire, R.J.; Berner, U.; Musikas, C.; Palmer, D.A.; Taylor, P.; Tochiyama, O. (2013). Chemical Thermodynamics of Iron, Part 1. Chemical Thermodynamics. Vol. 13a. OECD Nuclear Energy Agency (NEA).
  59. Brown, P.I.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 573−585.
  60. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 585–620.
  61. Baer, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 137.
  62. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  63. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 365.
  64. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Leuz, A.K.; Sjöberg, S.; Wanner, H. (2009). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)". Pure Appl. Chem. 81: 2425–2476. doi:10.1351/PAC-REP-09-03-05.
  65. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 135–145.
  66. Cataldo, S.; Lando, G.; Milea, D.; Orecchio, S.; Pettignano, A.; Sammartano, S. (2018). ", A novel thermodynamic approach for the complexation study of toxic metal cations by a landfill leachate". New J. Chem. 42: 7640–7648. doi:10.1039/C7NJ04456A. hdl:10447/326779.
  67. Feitknecht, W.; Schindler, P. (1963). "Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution". Pure and Applied Chemistry. 6 (2): 125–206. doi:10.1351/pac196306020125.
  68. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 86.
  69. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 136–141.
  70. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 89.
  71. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 178–195.
  72. Perrin, D.D (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 181.
  73. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 226.
  74. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 557−561.
  75. Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 568–570.
  76. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 302.
  77. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 741–755.
  78. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 312.
  79. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Hefter, G.; Sjöberg, S.; Wanner, H. (2005). "Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: the Hg2+– Cl, OH, CO32−, SO42−, and PO43− aqueous systems (IUPAC technical report)". Pure Appl. Chem. 77: 739–80. doi:10.1515/iupac.77.0018.
  80. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 256.
  81. Jolivet, J.-P. (2000). "Metal Oxide Chemistry and Synthesis". Solution to Solid State. Wiley.
  82. Crea, F.; De Stefano, C.; Irto, A.; Milea, D.; Pettignano, A.; Sammartano, S. (2017). "Modeling the acid-base properties of molybdate(VI) in different ionic media, ionic strengths and temperatures, by EDH, SIT and Pitzer equations". Journal of Molecular Liquids. 229: 15–26. doi:10.1016/j.molliq.2016.12.041.
  83. Neck, V.; Altmaier, M.; Rabung, T.; Lützenkirchen, J.; Fanghänel, T. (2009). "Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes". Pure Appl. Chem. 81: 1555–1568. doi:10.1351/PAC-CON-08-09-05.
  84. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 380.
  85. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 183.
  86. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 380–384.
  87. Brownº, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 384–394.
  88. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 183–184.
  89. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 394–396.
  90. Baes, C.F.; Messmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 246.
  91. Gamsjäger, H.; Bugajski, J.; Gajda, T.; Lemire, R.J.; Prei, W. (2005). Chemical Thermodynamics of Nickel, Chemical Thermodynamics, Volume 6. Paris: OECD.
  92. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen PSI, Switzerland: Paul Scherrer Institut. pp. 205–212.
  93. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 632–649.
  94. Galbács, Z.M.; Zsednai, Á.; Csányi, L.J. (1983). "The acidic behaviour of osmium(VIII) and osmium(VI". Transition Met. Chem. 8: 328–332. doi:10.1007/BF00618563.
  95. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 186.
  96. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 723−725.
  97. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 186–187.
  98. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 396–397.
  99. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 187–189.
  100. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 397–401.
  101. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 189–190.
  102. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 401–403.
  103. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. pp. 190–191.
  104. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 403–405.
  105. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 148–150.
  106. Perrin, D.D. (1969). Dissociation constants of inorganic acids and bases in aqueous solutions. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 191.
  107. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 263.
  108. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. p. 722.
  109. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 128.
  110. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 225–236.
  111. Olin, Å; Noläng, B.; Öhman, L.-O.; Osadchii, E; Rosén, E. (2005). Chemical Thermodynamics of Selenium. OECD Pub.
  112. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 386.
  113. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 387.
  114. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 342.
  115. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 278.
  116. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 725−730.
  117. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 142–147.
  118. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Weinheim, Germany: Wiley. pp. 210–213.
  119. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 252.
  120. Filella, M.; May, P.M. (2019). "The aqueous solution thermodynamics of tantalum under conditions of environmental and biological interest". Applied Geochemistry. 109: 104402. doi:10.1016/j.apgeochem.2019.104402.
  121. Filella, M.; May, P.M. (2019). "The aqueous chemistry of tellurium: critically-selected equilibrium constants for the low-molecular-weight inorganic species". Environ. Chem. 16: 289–295. doi:10.1071/EN19017.
  122. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 395.
  123. Brwon, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 287−290.
  124. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 335.
  125. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 817–826.
  126. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 168.
  127. Rand, M.; Fuger, J.; Grenthe, I.; Neck, V.; Rai, D. (2008). Chemical Thermodynamics of Thorium (PDF). OECD Publishing.
  128. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07. Villigen: Paul Scherrer Institut PSI. pp. 259–263.
  129. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 462–498.
  130. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 297−300.
  131. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 357.
  132. Cigala, R.M.; Crea, F.; De Stefan, C.; Lando, G.; Milea, D.; Sammartano, S. (2012). "The inorganic speciation of tin(II) in aqueous solution". Geochim. Cosmochim. Acta. 87: 1–20. doi:10.1016/j.gca.2012.03.029.
  133. Gamsjäger, H.; Gajda, T.; Sangster, J.; Saxena, S.K.; Voigt, W. (2012). Chemical Thermodynamics of Tin. Chemical Thermodynamics Volume 12. Paris: OECD.
  134. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 836–842.
  135. Perrin, D.D. (1969). Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution. International Union of Pure and Applied Chemistry. Commission on Electroanalytical Chemistry. Butterworths. p. 208.
  136. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 151.
  137. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 433–442.
  138. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 181.
  139. Thoenen, T.; Hummel, W.; Berner, U.; Curti, E. (2014). The PSI/Nagra Chemical Thermodynamic Database 12/07 (PDF). Villigen: Paul Scherrer Institut PSI.
  140. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley (published 336–349).
  141. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cation. New York: Wiley. p. 182.
  142. Grenthe, I.; Fuger, J.; Konings, R.J.M.; Lemire, R.J.; Muller, A.B.; Nguyen-Trung, C.; Wanner, H. (1992). Chemical Thermodynamics of Uranium, Chemical Vol 1, (PDF). Paris: OECD Publishing.
  143. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 350–379.
  144. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 209.
  145. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 517–541.
  146. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 247, 250−251 and 300−303.
  147. Baes, C.F.; Mesmer, R.E. (1976). The Hydrolysis of Cations. New York: Wiley. p. 293.
  148. Powell, K.J.; Brown, P.L.; Byrne, R.H.; Gajda, T.; Helfer, G.; Leuz, A.-K.; Sjöberg, S.; Wanner, H. (2013). "Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn2+ + OH, Cl, CO32–, SO42–, and PO43– systems (IUPAC Technical Report)*". Pure and Applied Chemistry. 85: 2249–2311.
  149. Brown, P.L.; Ekberg, C (2016). Hydrolysis of Metal Ions. Wiley. pp. 676−700.
  150. Brown, P.L.; Ekberg, C. (2016). Hydrolysis of Metal Ions. Wiley. pp. 442–460.

Share this article:

This article uses material from the Wikipedia article Hydrolysis_constant, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.