Isotopes_of_copper

Isotopes of copper

Isotopes of copper

Nuclides with atomic number of 29 but with different mass numbers


Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β decay. 64Cu decays by both β+ and β.[1]

Quick Facts Main isotopes, Decay ...

There are at least 10 metastable isomers of copper, including two each for 70Cu and 75Cu. The most stable of these is 68mCu with a half-life of 3.75 minutes. The least stable is 75m2Cu with a half-life of 149 ns.[1]

List of isotopes

More information Nuclide, Z ...
  1. mCu  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold symbol as daughter  Daughter product is stable.
  5. () spin value  Indicates spin with weak assignment arguments.
  6. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

Copper nuclear magnetic resonance

Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.[6]

Medical applications

Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.

There is growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[7]


References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  3. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  4. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
  5. Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34

Share this article:

This article uses material from the Wikipedia article Isotopes_of_copper, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.