List_of_map_projections

List of map projections

List of map projections

Add article description


This is a summary of map projections that have articles of their own on Wikipedia or that are otherwise notable. Because there is no limit to the number of possible map projections,[1] there can be no comprehensive list.

Table of projections

More information , Equivalent to Kavrayskiy VII vertically compressed by a factor of ...

*The first known popularizer/user and not necessarily the creator.

Key

Type of projection surface

Cylindrical
In normal aspect, these map regularly-spaced meridians to equally spaced vertical lines, and parallels to horizontal lines.
Pseudocylindrical
In normal aspect, these map the central meridian and parallels as straight lines. Other meridians are curves (or possibly straight from pole to equator), regularly spaced along parallels.
Conic
In normal aspect, conic (or conical) projections map meridians as straight lines, and parallels as arcs of circles.
Pseudoconical
In normal aspect, pseudoconical projections represent the central meridian as a straight line, other meridians as complex curves, and parallels as circular arcs.
Azimuthal
In standard presentation, azimuthal projections map meridians as straight lines and parallels as complete, concentric circles. They are radially symmetrical. In any presentation (or aspect), they preserve directions from the center point. This means great circles through the central point are represented by straight lines on the map.
Pseudoazimuthal
In normal aspect, pseudoazimuthal projections map the equator and central meridian to perpendicular, intersecting straight lines. They map parallels to complex curves bowing away from the equator, and meridians to complex curves bowing in toward the central meridian. Listed here after pseudocylindrical as generally similar to them in shape and purpose.
Other
Typically calculated from formula, and not based on a particular projection
Polyhedral maps
Polyhedral maps can be folded up into a polyhedral approximation to the sphere, using particular projection to map each face with low distortion.

Properties

Conformal
Preserves angles locally, implying that local shapes are not distorted and that local scale is constant in all directions from any chosen point.
Equal-area
Area measure is conserved everywhere.
Compromise
Neither conformal nor equal-area, but a balance intended to reduce overall distortion.
Equidistant
All distances from one (or two) points are correct. Other equidistant properties are mentioned in the notes.
Gnomonic
All great circles are straight lines.
Retroazimuthal
Direction to a fixed location B (by the shortest route) corresponds to the direction on the map from A to B.
Perspective
Can be constructed by light shining through a globe onto a developable surface.

See also


Notes

  1. Snyder, John P. (1993). Flattening the Earth: Two Thousand Years of Map Projections. University of Chicago Press. p. 1. ISBN 0-226-76746-9.
  2. Furuti, Carlos A. "Conic Projections: Equidistant Conic Projections". Archived from the original on November 30, 2012. Retrieved February 11, 2020.{{cite web}}: CS1 maint: unfit URL (link)
  3. ""Nicolosi Globular projection"" (PDF). Archived (PDF) from the original on 2016-04-29. Retrieved 2016-09-18.
  4. "New Earth Map Projection". vanderbei.princeton.edu. Retrieved 2023-04-27.
  5. Fuller-Wright, Liz. "Princeton astrophysicists re-imagine world map, designing a less distorted, 'radically different' way to see the world". Princeton University. Archived from the original on 2022-07-13. Retrieved 2022-07-13.
  6. Gott III, J. Richard; Goldberg, David M.; Vanderbei, Robert J. (2021-02-15). "Flat Maps that improve on the Winkel Tripel". arXiv:2102.08176 [astro-ph.IM].
  7. Jarke J. van Wijk. "Unfolding the Earth: Myriahedral Projections". Archived from the original on 2020-06-20. Retrieved 2011-03-08.
  8. Carlos A. Furuti. "Interrupted Maps: Myriahedral Maps". Archived from the original on 2020-01-17. Retrieved 2011-11-03.
  9. Rivière, Philippe (October 1, 2017). "Bertin Projection (1953)". visionscarto. Archived from the original on January 27, 2020. Retrieved January 27, 2020.
  10. Hao, Xiaoguang; Xue, Huaiping. "Generalized Equip-Difference Parallel Polyconical Projection Method for the Global Map" (PDF). Archived (PDF) from the original on February 9, 2023. Retrieved February 14, 2023.
  11. Alexeeva, Olga; Lasserre, Frédéric (October 20, 2022). "Le concept de troisième pôle: cartes et représentations polaires de la Chine". Géoconfluences (in French). Archived from the original on February 14, 2023. Retrieved February 14, 2023.
  12. Vriesema, Jochem (April 7, 2021). "Arctic geopolitics: China's remapping of the world". Clingendael Spectator. The Hague: Clingendael. Archived from the original on February 14, 2023. Retrieved February 14, 2023.

Further reading


Share this article:

This article uses material from the Wikipedia article List_of_map_projections, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.