Nagell–Lutz_theorem

Nagell–Lutz theorem

Nagell–Lutz theorem

Describes rational torsion points on elliptic curves over the integers


In mathematics, the Nagell–Lutz theorem is a result in the diophantine geometry of elliptic curves, which describes rational torsion points on elliptic curves over the integers. It is named for Trygve Nagell and Élisabeth Lutz.

Definition of the terms

Suppose that the equation

defines a non-singular cubic curve with integer coefficients a, b, c, and let D be the discriminant of the cubic polynomial on the right side:

Statement of the theorem

If P = (x,y) is a rational point of finite order on C, for the elliptic curve group law, then:

  • 1) x and y are integers
  • 2) either y = 0, in which case P has order two, or else y divides D, which immediately implies that y2 divides D.

Generalizations

The Nagell–Lutz theorem generalizes to arbitrary number fields and more general cubic equations.[1] For curves over the rationals, the generalization says that, for a nonsingular cubic curve whose Weierstrass form

has integer coefficients, any rational point P=(x,y) of finite order must have integer coordinates, or else have order 2 and coordinates of the form x=m/4, y=n/8, for m and n integers.

History

The result is named for its two independent discoverers, the Norwegian Trygve Nagell (1895–1988) who published it in 1935, and Élisabeth Lutz (1937).

See also


References

  1. See, for example, Theorem VIII.7.1 of Joseph H. Silverman (1986), "The arithmetic of elliptic curves", Springer, ISBN 0-387-96203-4.

Share this article:

This article uses material from the Wikipedia article Nagell–Lutz_theorem, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.