Natural_logarithm_of_2

Natural logarithm of 2

Natural logarithm of 2

Mathematical constant


The decimal value of the natural logarithm of 2 (sequence A002162 in the OEIS) is approximately

The logarithm of 2 in other bases is obtained with the formula

The common logarithm in particular is (OEIS: A007524)

The inverse of this number is the binary logarithm of 10:

(OEIS: A020862).

By the Lindemann–Weierstrass theorem, the natural logarithm of any natural number other than 0 and 1 (more generally, of any positive algebraic number other than 1) is a transcendental number.

Series representations

Rising alternate factorial

This is the well-known "alternating harmonic series".

Binary rising constant factorial

Other series representations

using
(sums of the reciprocals of decagonal numbers)

Involving the Riemann Zeta function

(γ is the Euler–Mascheroni constant and ζ Riemann's zeta function.)

BBP-type representations

(See more about Bailey–Borwein–Plouffe (BBP)-type representations.)

Applying the three general series for natural logarithm to 2 directly gives:

Applying them to gives:

Applying them to gives:

Applying them to gives:

Representation as integrals

The natural logarithm of 2 occurs frequently as the result of integration. Some explicit formulas for it include:

Other representations

The Pierce expansion is OEIS: A091846

The Engel expansion is OEIS: A059180

The cotangent expansion is OEIS: A081785

The simple continued fraction expansion is OEIS: A016730

,

which yields rational approximations, the first few of which are 0, 1, 2/3, 7/10, 9/13 and 61/88.

This generalized continued fraction:

,[1]
also expressible as

Bootstrapping other logarithms

Given a value of ln 2, a scheme of computing the logarithms of other integers is to tabulate the logarithms of the prime numbers and in the next layer the logarithms of the composite numbers c based on their factorizations

This employs

More information prime, approximate natural logarithm ...

In a third layer, the logarithms of rational numbers r = a/b are computed with ln(r) = ln(a) − ln(b), and logarithms of roots via ln nc = 1/n ln(c).

The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2i close to powers bj of other numbers b is comparatively easy, and series representations of ln(b) are found by coupling 2 to b with logarithmic conversions.

Example

If ps = qt + d with some small d, then ps/qt = 1 + d/qt and therefore

Selecting q = 2 represents ln p by ln 2 and a series of a parameter d/qt that one wishes to keep small for quick convergence. Taking 32 = 23 + 1, for example, generates

This is actually the third line in the following table of expansions of this type:

More information s, p ...

Starting from the natural logarithm of q = 10 one might use these parameters:

More information s, p ...

Known digits

This is a table of recent records in calculating digits of ln 2. As of December 2018, it has been calculated to more digits than any other natural logarithm[2][3] of a natural number, except that of 1.

More information Date, Name ...

See also


References

  • Brent, Richard P. (1976). "Fast multiple-precision evaluation of elementary functions". J. ACM. 23 (2): 242–251. doi:10.1145/321941.321944. MR 0395314. S2CID 6761843.
  • Uhler, Horace S. (1940). "Recalculation and extension of the modulus and of the logarithms of 2, 3, 5, 7 and 17". Proc. Natl. Acad. Sci. U.S.A. 26 (3): 205–212. Bibcode:1940PNAS...26..205U. doi:10.1073/pnas.26.3.205. MR 0001523. PMC 1078033. PMID 16588339.
  • Sweeney, Dura W. (1963). "On the computation of Euler's constant". Mathematics of Computation. 17 (82): 170–178. doi:10.1090/S0025-5718-1963-0160308-X. MR 0160308.
  • Chamberland, Marc (2003). "Binary BBP-formulae for logarithms and generalized Gaussian–Mersenne primes" (PDF). Journal of Integer Sequences. 6: 03.3.7. Bibcode:2003JIntS...6...37C. MR 2046407. Archived from the original (PDF) on 2011-06-06. Retrieved 2010-04-29.
  • Gourévitch, Boris; Guillera Goyanes, Jesús (2007). "Construction of binomial sums for π and polylogarithmic constants inspired by BBP formulas" (PDF). Applied Math. E-Notes. 7: 237–246. MR 2346048.
  • Wu, Qiang (2003). "On the linear independence measure of logarithms of rational numbers". Mathematics of Computation. 72 (242): 901–911. doi:10.1090/S0025-5718-02-01442-4.
  1. Borwein, J.; Crandall, R.; Free, G. (2004). "On the Ramanujan AGM Fraction, I: The Real-Parameter Case" (PDF). Exper. Math. 13 (3): 278–280. doi:10.1080/10586458.2004.10504540. S2CID 17758274.
  2. "y-cruncher". numberworld.org. Retrieved 10 December 2018.
  3. "Natural log of 2". numberworld.org. Retrieved 10 December 2018.
  4. "Records set by y-cruncher". Archived from the original on 2020-09-15. Retrieved September 15, 2020.
  5. "Natural logarithm of 2 (Log(2)) world record by Seungmin Kim". 19 August 2020. Retrieved September 15, 2020.
  6. "Records set by y-cruncher". Retrieved October 26, 2021.
  7. "Natural Log of 2 - William Echols". Retrieved October 26, 2021.

Share this article:

This article uses material from the Wikipedia article Natural_logarithm_of_2, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.