Nesting_algorithm

Nesting algorithm

Nesting algorithm

Add article description


Nesting algorithms are used to make the most efficient use of material or space by evaluating many different possible combinations via recursion.

  1. Linear (1-dimensional): The simplest of the algorithms illustrated here. For an existing set there is only one position where a new cut can be placed – at the end of the last cut. Validation of a combination involves a simple Stock - Yield - Kerf = Scrap calculation.
  2. Plate (2-dimensional): These algorithms are significantly more complex. For an existing set, there may be as many as eight positions where a new cut may be introduced next to each existing cut, and if the new cut is not perfectly square then different rotations may need to be checked. Validation of a potential combination involves checking for intersections between two-dimensional objects.[1]
  3. Packing (3-dimensional): These algorithms are the most complex illustrated here due to the larger number of possible combinations. Validation of a potential combination involves checking for intersections between three-dimensional objects.
Pictorial representations of three different types of nesting algorithms: Linear, Plate and Packing

[1]


References

  1. Herrmann, Jeffrey; Delalio, David. "Algorithms for Sheet Metal Nesting" (PDF). IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. Retrieved 29 August 2015.



Share this article:

This article uses material from the Wikipedia article Nesting_algorithm, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.