Numerical_analytic_continuation

Numerical analytic continuation

Numerical analytic continuation

Add article description


In many-body physics, the problem of analytic continuation is that of numerically extracting the spectral density of a Green function given its values on the imaginary axis. It is a necessary post-processing step for calculating dynamical properties of physical systems from Quantum Monte Carlo simulations, which often compute Green function values only at imaginary times or Matsubara frequencies.

Mathematically, the problem reduces to solving a Fredholm integral equation of the first kind with an ill-conditioned kernel. As a result, it is an ill-posed inverse problem with no unique solution and where a small noise on the input leads to large errors in the unregularized solution. There are different methods for solving this problem including the maximum entropy method,[1][2][3][4] the average spectrum method[5][6][7][8] and Pade approximation methods.[9][10]

Examples

A common analytic continuation problem is obtaining the spectral function at real frequencies from the Green function values at Matsubara frequencies by numerically inverting the integral equation

where for fermionic systems or for bosonic ones and is the inverse temperature. This relation is an example of Kramers-Kronig relation.


The spectral function can also be related to the imaginary-time Green function be applying the inverse Fourier transform to the above equation

with . Evaluating the summation over Matsubara frequencies gives the desired relation

where the upper sign is for fermionic systems and the lower sign is for bosonic ones.


Another example of the analytic continuation is calculating the optical conductivity from the current-current correlation function values at Matsubara frequencies. The two are related as following

Software

  • The Maxent Project: Open source utility for performing analytic continuation using the maximum entropy method.
  • Spektra: Free online tool for performing analytic continuation using the average spectrum Method.
  • SpM: Sparse modeling tool for analytic continuation of imaginary-time Green’s function.

See also


References

  1. Silver, R. N.; Sivia, D. S.; Gubernatis, J. E. (1990-02-01). "Maximum-entropy method for analytic continuation of quantum Monte Carlo data". Physical Review B. 41 (4): 2380–2389. Bibcode:1990PhRvB..41.2380S. doi:10.1103/PhysRevB.41.2380. PMID 9993975.
  2. White, S. R. (1991). "The Average Spectrum Method for the Analytic Continuation of Imaginary-Time Data". In Landau, David P.; Mon, K. K.; Schüttler, Heinz-Bernd (eds.). Computer Simulation Studies in Condensed Matter Physics III. Springer Proceedings in Physics. Vol. 53. Berlin, Heidelberg: Springer. pp. 145–153. doi:10.1007/978-3-642-76382-3_13. ISBN 978-3-642-76382-3.

Share this article:

This article uses material from the Wikipedia article Numerical_analytic_continuation, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.