Saccharomyces_paradoxus

<i>Saccharomyces paradoxus</i>

Saccharomyces paradoxus

Species of fungus


Saccharomyces paradoxus is a wild yeast and the closest known species to the baker's yeast Saccharomyces cerevisiae. It is used in population genomics and phylogenetic studies to compare its wild characteristics to laboratory yeasts.[1]

Quick Facts Saccharomyces paradoxus, Scientific classification ...

Ecology

Saccharomyces paradoxus is mostly isolated from deciduous trees (oak, maple, birch), and in some rare occasions on insects and fruits.[2][3][4][5] It is often found in sympatry with other Saccharomyces species.[6][7][8] Like Saccharomyces cerevisiae, it has a worldwide distribution and it is mesophilic, which limits its natural distribution to low latitudes. However, Saccharomyces paradoxus typically grows at lower temperatures than Saccharomyces cerevisiae, resulting in a slight shift in its distribution toward cooler regions, like British islands and Eastern Canada.[2][8][9]

Biogeography

Saccharomyces paradoxus worldwide distribution. Populations are represented in different colours. Green asterisks indicate recent introductions of the European type.
Phylogeny of main Saccharomyces paradoxus populations.[10]

Unlike most other Saccharomyces species, there is no evidence that Saccharomyces paradoxus has been domesticated by humans.[3][11] Accordingly, its biogeography is mostly marked by natural processes like limited migration,[3] glacial refugia[12] and adaptation to climate.[10] At least four genetically and phenotypically distinct populations of Saccharomyces paradoxus have been identified, corresponding to main geographical divisions: Europe (including West Siberia), Far East Asia (Japan, Eastern Siberia), North America (North American East and West coasts, Great Lakes region) and North-East America (Gaspé Peninsula, Saint Lawrence Valley and Appalaches), respectively.[3][9][10][11] Representative strains of these populations exhibit partial post-zygotic isolation.[12][13] A fifth population is represented by a singleton isolate from Hawaii.[3][11] Some strains from the European population are found in North America and New Zealand and likely result from recent colonization events.[14][15] Two isolates from South America, described as Saccharomyces cariocanus,[16] are genetically indistinguishable but exhibit post-zygotic isolation when crossed to strains from the American population, due to chromosomal translocations.[13]

Reproduction

Saccharomyces paradoxus is naturally homothallic, and is mostly found as diploid in the environment. Reproduction is mostly clonal and 99% of sexual reproduction occurs between spores from the same ascus.[17] This purges recessive deleterious mutations that accumulated during clonal expansion, in a process known as "genome renewal".[18][19] Post-zygotic isolation between strains of Saccharomyces paradoxus is commonly observed and could be either due to genetic divergence between populations or to chromosomal changes within populations.[12][13]

Like in other Saccharomyces species, heterothallism can be restored using standard genetic tools, to obtain stable haploid strains for experimental purposes.


References

  1. Dunham, MJ; Louis, ED (2011). "Yeast evolution and ecology meet genomics". EMBO Reports. 12 (1): 8–10. doi:10.1038/embor.2010.204. PMC 3024138. PMID 21151040.
  2. Naumov, GI; Naumova, ES; Sniegowski, PD (1998). "Saccharomyces paradoxus and Saccharomyces cerevisiae are associated with exudates of North American oaks". Canadian Journal of Microbiology. 44 (11): 1045–50. doi:10.1139/w98-104. PMID 10029999.
  3. Johnson, LJ; Koufopanou, V; Goddard, MR (2004). "Population genetics of the wild yeast Saccharomyces paradoxus". Genetics. 166 (1): 43–52. doi:10.1534/genetics.166.1.43. PMC 1470673. PMID 15020405.
  4. Leducq, J-B; Charron, G; Samani, P (2014). "Local climatic adaptation in a widespread microorganism". Proceedings of the Royal Society B: Biological Sciences. 281 (1777): 20132472. doi:10.1098/rspb.2013.2472. PMC 3896012. PMID 24403328.
  5. Liti, G; Carter, DM; Moses, AM (2009). "Population genomics of domestic and wild yeasts". Nature. 458 (7236): 337–41. Bibcode:2009Natur.458..337L. doi:10.1038/nature07743. PMC 2659681. PMID 19212322.
  6. Charron, G; Leducq, J-B; Landry, CR (2014). "Chromosomal variation segregates within incipient species and correlates with reproductive isolation". Molecular Ecology. 23 (17): 4362–4372. doi:10.1111/mec.12864. PMID 25039979. S2CID 43071397.
  7. Naumov, GI; James, SA; Naumova, ES (2000). "Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae". International Journal of Systematic and Evolutionary Microbiology. 50 (5): 1931–42. doi:10.1099/00207713-50-5-1931. PMID 11034507.
  8. Tsai, IJ; Bensasson, D; Burt, A (2008). "Population genomics of the wild yeast Saccharomyces paradoxus: Quantifying the life cycle". Proceedings of the National Academy of Sciences of the United States of America. 105 (12): 4957–62. Bibcode:2008PNAS..105.4957T. doi:10.1073/pnas.0707314105. PMC 2290798. PMID 18344325.
  9. Mortimer, Robert K.; Romano, Patrizia; Suzzi, Giovanna; Polsinelli, Mario (December 1994). "Genome renewal: A new phenomenon revealed from a genetic study of 43 strains ofSaccharomyces cerevisiae derived from natural fermentation of grape musts". Yeast. 10 (12): 1543–1552. doi:10.1002/yea.320101203. PMID 7725789. S2CID 11989104.

Share this article:

This article uses material from the Wikipedia article Saccharomyces_paradoxus, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.