Solar_eclipse_of_June_10,_2002

Solar eclipse of June 10, 2002

Solar eclipse of June 10, 2002

21st-century annular solar eclipse


An annular solar eclipse occurred on Monday, June 10, 2002. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Indonesia, Palau (Kayangel Atoll), Northern Mariana on June 11 (Tuesday), and the western tip of Jalisco, Mexico, on June 10 (Monday). This eclipse was during the 2002 FIFA World Cup. The closest apogee occurred on June 4, 2002. It was the first annular solar eclipse visible in the Pacific in 6 months.

Quick Facts Type of eclipse, Nature ...

It was partially visible in some areas of the United States; in Ventura, in southern California, some observation stations were set up for public viewing.[1] In Palm Desert, in the Coachella Valley, it was clearly visible, and it "got dark, it got cool, and it got eerie".[2]A "solar eclipse party" in Fresno drew around 400 attendees,[3] and as far north as Napa Valley, dozens of people went outside to watch the eclipse.,[4] and it was visible in Utah.[5] Canada's National Post predicted a "substantial crowd" for Vancouver, despite the eclipse there being less than 60%;[6] even in Victoria, where the eclipse was as low as 30%, dozens attended a show at the Dominion Astrophysical Observatory.[7]

Images

Eclipses of 2002

Tzolkinex

Half-Saros

Tritos

Solar Saros 137

Inex

Solar eclipses 2000–2003

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[8]

Partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year set.

More information Ascending node, Descending node ...

Saros 137

It is a part of Saros cycle 137, repeating every 18 years, 11 days, containing 70 events. The series started with partial solar eclipse on May 25, 1389. It contains total eclipses from August 20, 1533, through December 6, 1695, first set of hybrid eclipses from December 17, 1713, through February 11, 1804, first set of annular eclipses from February 21, 1822, through March 25, 1876, second set of hybrid eclipses from April 6, 1894, through April 28, 1930, and second set of annular eclipses from May 9, 1948, through April 13, 2507. The series ends at member 70 as a partial eclipse on June 28, 2633. The longest duration of totality was 2 minutes, 55 seconds on September 10, 1569. Solar Saros 137 has 55 umbral eclipses from August 20, 1533, through April 13, 2507 (973.62 years). That's almost 1 millennium!

More information Series members 30–40 occur between 1901 and 2100: ...

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

More information Series members between 1801 and 2100 ...

In the 22nd century:

  • Solar saros 147: annular solar eclipse of August 4, 2111
  • Solar saros 148: total solar eclipse of July 4, 2122
  • Solar saros 149: total solar eclipse of June 3, 2133
  • Solar saros 150: annular solar eclipse of May 3, 2144
  • Solar saros 151: annular solar eclipse of April 2, 2155
  • Solar saros 152: total solar eclipse of March 2, 2166
  • Solar saros 153: annular solar eclipse of January 29, 2177
  • Solar saros 154: annular solar eclipse of December 29, 2187
  • Solar saros 155: total solar eclipse of November 28, 2198

In the 23rd century:

  • Solar saros 156: annular solar eclipse of October 29, 2209
  • Solar saros 157: annular solar eclipse of September 27, 2220
  • Solar saros 158: total solar eclipse of August 28, 2231
  • Solar saros 159: partial solar eclipse of July 28, 2242
  • Solar saros 160: partial solar eclipse of June 26, 2253
  • Solar saros 161: partial solar eclipse of May 26, 2264
  • Solar saros 162: partial solar eclipse of April 26, 2275
  • Solar saros 163: partial solar eclipse of March 25, 2286
  • Solar saros 164: partial solar eclipse of February 22, 2297

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

More information 21 eclipse events, progressing from south to north between June 10, 1964, and August 21, 2036, June 10–11 ...

References

  1. "Eclipse observation station being set up in Grant Park today". Ventura County Star. Ventura, California. 2002-06-10. p. 11. Retrieved 2023-10-15 via Newspapers.com.
  2. Velush, Lukas (2002-06-11). "Solar phenomenon awes local residents". The Desert Sun. p. 11. Retrieved 2023-10-24 via Newspapers.com.
  3. Yahaira Castro (2002-06-11). "Discovery Center's solar eclipse party proves popular". The Fresno Bee.
  4. Roseann Langlois (2002-06-11). "Solar eclipse covers Napa Valley". The Napa Valley Register.
  5. "Solar eclipse tonight last to be visible in Utah for 10 years". The Daily Spectrum. Saint George, Utah. 2002-06-10. p. 1. Retrieved 2023-10-15 via Newspapers.com.
  6. "West will have best view of solar eclipse". National Post. Ontario, Canada. 2002-06-10. p. 2. Retrieved 2023-10-15 via Newspapers.com.
  7. Gerard Young (2002-06-11). "Celestial show draws curious". Times Colonist. Victoria, British Columbia.
  8. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

Photos:


Share this article:

This article uses material from the Wikipedia article Solar_eclipse_of_June_10,_2002, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.