Display_Encode_Mode

Video Coding Engine

Video Coding Engine

AMD hardware accelerator for encoding MP4 H.264 videos, built into AMD GPU's


Video Code Engine (VCE, was earlier referred to as Video Coding Engine,[1] Video Compression Engine[2] or Video Codec Engine[3] in official AMD documentation) is AMD's video encoding application-specific integrated circuit implementing the video codec H.264/MPEG-4 AVC. Since 2012 it was integrated into all of their GPUs and APUs except Oland.

VCE was introduced with the Radeon HD 7000 series on 22 December 2011.[4][5][6] VCE occupies a considerable amount of the die surface at the time of its introduction[7] and is not to be confused with AMD's Unified Video Decoder (UVD).

As of AMD Raven Ridge (released January 2018), UVD and VCE were succeeded by Video Core Next (VCN).

Overview

In "full-fixed mode" the entire computation is done by the fixed-function VCE unit. Full-fixed mode can be accessed through the OpenMAX IL API.
The entropy encoding block of the VCE ASIC is also separately accessible, enabling "hybrid mode". In "hybrid mode" most of the computation is done by the 3D engine of the GPU. Using AMD's Accelerated Parallel Programming SDK and OpenCL developers can create hybrid encoders that pair custom motion estimation, inverse discrete cosine transform and motion compensation with the hardware entropy encoding to achieve faster than real-time encoding.

The handling of video data involves computation of data compression algorithms and possibly of video processing algorithms. As the template compression methods shows, lossy video compression algorithms involve the steps: motion estimation (ME), discrete cosine transform (DCT), and entropy encoding (EC).

AMD Video Code Engine (VCE) is a full hardware implementation of the video codec H.264/MPEG-4 AVC. It is capable of delivering 1080p at 60 frames/sec. Because its entropy encoding block is also a separately accessible Video Codec Engine, it can be operated in two modes: full-fixed mode and hybrid mode.[8][9]

By employing AMD APP SDK, available for Linux and Microsoft Windows, developers can create hybrid encoders that pair custom motion estimation, inverse discrete cosine transform and motion compensation with the hardware entropy encoding to achieve faster than real-time encoding. In hybrid mode, only the entropy encoding block of the VCE unit is used, while the remaining computation is offloaded to the 3D engine of the GPU, so the computing scales with the number of available compute units (CUs).

VCE 1.0

As of April 2014, there are two versions of VCE.[1] Version 1.0 supports H.264 YUV420 (I & P frames), H.264 SVC Temporal Encode VCE, and Display Encode Mode (DEM).

It can be found on:

  • Piledriver-based
    • Trinity APUs (Ax-5xxx, e.g. A10-5800K)
    • Richland APUs (Ax-6xxx, e.g. A10-6800K)
  • GPUs of the Southern Islands generation (GCN1: CAYMAN, ARUBA (Trinity/Richland), CAPE VERDE, PITCAIRN, TAHITI). These are
    • Radeon HD 7700 series (except HD 7790 with VCE 2.0)
    • Radeon HD 7800 series
    • Radeon HD 7900 series
    • Radeon HD 8570 to 8990 (except HD 8770 with VCE 2.0)
    • Radeon R7 250E, 250X, 265 / R9 270, 270X, 280, 280X
    • Radeon R7 360, 370, 455 / R9 370, 370X
    • Mobile Radeon HD 77x0M to HD 7970M
    • Mobile Radeon HD 8000-Series
    • Mobile Radeon Rx M2xx Series (except R9 M280X with VCE 2.0 and R9 M295X with VCE 3.0)
    • Mobile Radeon R5 M330 to R9 M390
    • FirePro cards with 1st Generation GCN (GCN1) (Except W2100, which is Oland XT)

VCE 2.0

Compared to the first version, VCE 2.0 adds H.264 YUV444 (I-Frames), B-frames for H.264 YUV420, and improvements to the DEM (Display Encode Mode), which results in a better encoding quality.

It can be found on:

  • Steamroller-based
    • Kaveri APUs (Ax-7xxx, e.g. A10-7850K)
    • Godavari APUs (Ax-7xxx, e.g. A10-7890K)
  • Jaguar-based
    • Kabini APUs (e.g. Athlon 5350, Sempron 2650)
    • Temash APUs (e.g. A6-1450, A4-1200)
  • Puma-based
    • Beema and Mullins
  • GPUs of the Sea Islands generation as well Bonaire or Hawaii GPUs (2nd Generation Graphics Core Next), such as
    • Radeon HD 7790, 8770
    • Radeon R7 260, 260X / R9 290, 290X, 295X2
    • Radeon R7 360 / R9 390, 390X
    • Mobile Radeon R9 M280X
    • Mobile Radeon R9 M385, M385X
    • Mobile Radeon R9 M470, M470X
    • FirePro cards with 2nd Generation GCN (GCN2)

VCE 3.0

Video Code Engine 3.0 (VCE 3.0) technology features a new high-quality video scaling and - since version 3.4 - High Efficiency Video Coding (HEVC/H.265).[10][11]

It, together with UVD 6.0, can be found on 3rd generation of Graphics Core Next (GCN3) with "Tonga", "Fiji", "Iceland", and "Carrizo" (VCE 3.1) based graphics controller hardware, which is now used AMD Radeon Rx 300 series (Pirate Islands GPU family) and VCE 3.4 by actual AMD Radeon Rx 400 series and AMD Radeon 500 series (both Polaris GPU family).

  • Tonga: Radeon R9 285, 380, 380X; Mobile Radeon R9 M390X, M395, M395X, M485X
  • Tonga XT: FirePro W7100, S7100X, S7150, S7150 X2
  • Fiji: Radeon R9 Fury, Fury X, Nano; Radeon Pro Duo (2016); FirePro S9300, W7170M; Instinct MI8
  • Polaris: RX 460, 470, 480; RX 550, 560, 570, 580; Radeon Pro Duo (2017)

VCE 3.0 removes support for H.264 B-frames.[12]

VCE 4.0

The Video Code Engine 4.0 encoder and UVD 7.0 decoder are included in the Vega-based GPUs.[13][14]

VCE 4.1

AMD's Vega20 GPU, present in the Instinct Mi50, Instinct Mi60 and Radeon VII cards, include VCE 4.1 and two UVD 7.2 instances.[15][16]

Feature overview

APUs

The following table shows features of AMD's processors with 3D graphics, including APUs (see also: List of AMD processors with 3D graphics).

More information Platform, High, standard and low power ...
  1. For FM2+ Excavator models: A8-7680, A6-7480 & Athlon X4 845.
  2. A PC would be one node.
  3. An APU combines a CPU and a GPU. Both have cores.
  4. Requires firmware support.
  5. Requires firmware support.
  6. No SSE4. No SSSE3.
  7. Single-precision performance is calculated from the base (or boost) core clock speed based on a FMA operation.
  8. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  9. To feed more than two displays, the additional panels must have native DisplayPort support.[26] Alternatively active DisplayPort-to-DVI/HDMI/VGA adapters can be employed.
  10. DRM (Direct Rendering Manager) is a component of the Linux kernel. Support in this table refers to the most current version.

GPUs

The following table shows features of AMD/ATI's GPUs (see also: List of AMD graphics processing units).

More information Name of GPU series, Wonder ...
  1. The Radeon 100 Series has programmable pixel shaders, but do not fully comply with DirectX 8 or Pixel Shader 1.0. See article on R100's pixel shaders.
  2. R300, R400 and R500 based cards do not fully comply with OpenGL 2+ as the hardware does not support all types of non-power of two (NPOT) textures.
  3. OpenGL 4+ compliance requires supporting FP64 shaders and these are emulated on some TeraScale chips using 32-bit hardware.
  4. The UVD and VCE were replaced by the Video Core Next (VCN) ASIC in the Raven Ridge APU implementation of Vega.
  5. Video processing for video frame rate interpolation technique. In Windows it works as a DirectShow filter in your player. In Linux, there is no support on the part of drivers and / or community.
  6. To play protected video content, it also requires card, operating system, driver, and application support. A compatible HDCP display is also needed for this. HDCP is mandatory for the output of certain audio formats, placing additional constraints on the multimedia setup.
  7. More displays may be supported with native DisplayPort connections, or splitting the maximum resolution between multiple monitors with active converters.
  8. DRM (Direct Rendering Manager) is a component of the Linux kernel. AMDgpu is the Linux kernel module. Support in this table refers to the most current version.

Operating system support

The VCE SIP core needs to be supported by the device driver. The device driver provides one or multiple interfaces, e. g. OpenMAX IL. One of these interfaces is then used by end-user software, like GStreamer or HandBrake (HandBrake rejected VCE support in December 2016,[45] but added it in December 2018[46]), to access the VCE hardware and make use of it.

AMD's proprietary device driver AMD Catalyst is available for multiple operating systems and support for VCE was added to it[citation needed]. Additionally, a free device driver is available. This driver also supports the VCE hardware.

Linux

Support for the VCE ASIC is contained in the Linux kernel device driver amdgpu.

Windows

The software "MediaShow Espresso Video Transcoding" seems to utilize VCE and UVD to the fullest extent possible.[51]

XSplit Broadcaster supports VCE from version 1.3.[52]

Open Broadcaster Software (OBS Studio) supports VCE for recording and streaming. The original Open Broadcaster Software (OBS) requires a fork build in order to enable VCE.[53]

AMD Radeon Software supports VCE with built in game capture ("Radeon ReLive") and use AMD AMF/VCE on APU or Radeon Graphics card to reduce FPS drop when capturing game or video content.[54]

HandBrake added Video Coding Engine support in version 1.2.0 in December 2018.[46]

Successor

The VCE was succeeded by AMD Video Core Next in the Raven Ridge series of APUs released in October 2017. The VCN combines both encode (VCE) and decode (UVD).[55]

See also

Video hardware technologies

AMD

Others


References

  1. "Introducing the Video Coding Engine (VCE) - AMD". developer.amd.com. Archived from the original on 4 June 2016. Retrieved 15 January 2022.
  2. "Updates" (PDF). amd.com.
  3. "White Paper AMD UnifiedVideoDecoder (UVD)" (PDF). 2012-06-15. Retrieved 2017-05-20.
  4. "AMD's Radeon HD 7970 graphics processor - The Tech Report - Page 5". The Tech Report. 3 January 2012. Retrieved 2014-03-27.
  5. "AMD A-Series APU block diagram". 2011-06-30. Retrieved 2015-01-22.
  6. "Radeon HD 8900 Specs". AMD. Retrieved 2016-07-18.
  7. "Mailing Lists". lists.freedesktop.org. 4 June 2015. Retrieved 25 September 2023.
  8. "VCEEnc". June 10, 2023 via GitHub.
  9. Killian, Zak (March 22, 2017). "AMD publishes patches for Vega support on Linux". Tech Report. Retrieved March 23, 2017.
  10. Larabel, Michael (20 March 2017). "AMD Sends Out 100 Patches, Enabling Vega Support In AMDGPU DRM". Phoronix. Retrieved 25 August 2017.
  11. Deucher, Alex (15 May 2018). "[PATCH 50/57] drm/amdgpu/vg20:Enable the 2nd instance IRQ for uvd 7.2". Retrieved 2019-01-13.
  12. "AMD VEGA10 and VEGA11 GPUs spotted in OpenCL driver". VideoCardz.com. Retrieved 6 June 2017.
  13. Larabel, Michael (17 November 2017). "Radeon VCN Encode Support Lands in Mesa 17.4 Git". Phoronix. Retrieved 20 November 2017.
  14. Tony Chen; Jason Greaves, "AMD's Graphics Core Next (GCN) Architecture" (PDF), AMD, retrieved 13 August 2016
  15. "A technical look at AMD's Kaveri architecture". Semi Accurate. Retrieved 6 July 2014.
  16. Airlie, David (26 November 2009). "DisplayPort supported by KMS driver mainlined into Linux kernel 2.6.33". Retrieved 16 January 2016.
  17. "Radeon feature matrix". freedesktop.org. Retrieved 10 January 2016.
  18. Deucher, Alexander (16 September 2015). "XDC2015: AMDGPU" (PDF). Retrieved 16 January 2016.
  19. Michel Dänzer (17 November 2016). "[ANNOUNCE] xf86-video-amdgpu 1.2.0". lists.x.org.
  20. "AMD Radeon HD 6900 (AMD Cayman) series graphics cards". HWlab. hw-lab.com. December 19, 2010. Archived from the original on August 23, 2022. Retrieved August 23, 2022. New VLIW4 architecture of stream processors allowed to save area of each SIMD by 10%, while performing the same compared to previous VLIW5 architecture
  21. "GPU Specs Database". TechPowerUp. Retrieved August 23, 2022.
  22. "NPOT Texture (OpenGL Wiki)". Khronos Group. Retrieved February 10, 2021.
  23. "Mesamatrix". mesamatrix.net. Retrieved 2018-04-22.
  24. "RadeonFeature". X.Org Foundation. Retrieved 2018-04-20.
  25. "AMD Radeon RX 6800 XT Specs". TechPowerUp. Retrieved January 1, 2021.
  26. "AMD Launches The Radeon PRO W7500/W7600 RDNA3 GPUs". Phoronix. 3 August 2023. Retrieved 4 September 2023.
  27. "AMD Radeon Pro 5600M Grafikkarte". TopCPU.net (in German). Retrieved 4 September 2023.
  28. Larabel, Michael (September 15, 2020). "AMD Radeon Navi 2 / VCN 3.0 Supports AV1 Video Decoding". Phoronix. Retrieved January 1, 2021.
  29. Edmonds, Rich (February 4, 2022). "ASUS Dual RX 6600 GPU review: Rock-solid 1080p gaming with impressive thermals". Windows Central. Retrieved November 1, 2022.
  30. "Radeon's next-generation Vega architecture" (PDF). Radeon Technologies Group (AMD). Archived from the original (PDF) on September 6, 2018. Retrieved June 13, 2017.
  31. Larabel, Michael (December 7, 2016). "The Best Features of the Linux 4.9 Kernel". Phoronix. Retrieved December 7, 2016.
  32. "AMDGPU". Retrieved December 29, 2023.
  33. "HandBrake rejected VCE pull request". GitHub. 2016-12-08. Retrieved 2017-08-15.
  34. "HandBrake added VCE support in v1.2.0". 2018-12-22. Retrieved 2018-12-31.
  35. König, Christian (4 February 2014). "initial VCE support". mesa-dev (Mailing list). Retrieved 28 November 2015.
  36. König, Christian (24 October 2013). "OpenMAX state tracker". mesa-dev (Mailing list). Retrieved 28 November 2015.
  37. "st/omx/enc: implement h264 level support". 2014-06-12. Retrieved 2017-05-20.
  38. "MediaShow Espresso Video Transcoding Benchmark". 2014-01-14. Retrieved 2017-05-20.
  39. "OBS branch with AMD VCE support". May 2, 2014. Retrieved 2017-05-20.
  40. Larabel, Michael (17 November 2017). "Radeon VCN Encode Support Lands In Mesa 17.4 Git". Phoronix. Retrieved 20 November 2017.

Share this article:

This article uses material from the Wikipedia article Display_Encode_Mode, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.