Order-5_cubic_honeycomb

Order-5 cubic honeycomb

Order-5 cubic honeycomb

Regular tiling of hyperbolic 3-space


In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

Order-5 cubic honeycomb

Poincaré disk models
TypeHyperbolic regular honeycomb
Uniform hyperbolic honeycomb
Schläfli symbol{4,3,5}
Coxeter diagram
Cells{4,3} (cube)
Faces{4} (square)
Edge figure{5} (pentagon)
Vertex figure
icosahedron
Coxeter groupBH3, [4,3,5]
DualOrder-4 dodecahedral honeycomb
PropertiesRegular

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Description

It is analogous to the 2D hyperbolic order-5 square tiling, {4,5}

One cell, centered in Poincare ball model

Main cells

Cells with extended edges to ideal boundary

Symmetry

It has a radical subgroup symmetry construction with dodecahedral fundamental domains: Coxeter notation: [4,(3,5)*], index 120.

The order-5 cubic honeycomb has a related alternated honeycomb, , with icosahedron and tetrahedron cells.

The honeycomb is also one of four regular compact honeycombs in 3D hyperbolic space:

Four regular compact honeycombs in H3

{5,3,4}

{4,3,5}

{3,5,3}

{5,3,5}

There are fifteen uniform honeycombs in the [5,3,4] Coxeter group family, including the order-5 cubic honeycomb as the regular form:

The order-5 cubic honeycomb is in a sequence of regular polychora and honeycombs with icosahedral vertex figures.

More information {p,3,5} polytopes, Space ...

It is also in a sequence of regular polychora and honeycombs with cubic cells. The first polytope in the sequence is the tesseract, and the second is the Euclidean cubic honeycomb.

More information {4,3,p} regular honeycombs, Space ...

Rectified order-5 cubic honeycomb

More information , ...

The rectified order-5 cubic honeycomb, , has alternating icosahedron and cuboctahedron cells, with a pentagonal prism vertex figure.

It can be seen as analogous to the 2D hyperbolic tetrapentagonal tiling, r{4,5} with square and pentagonal faces

There are four rectified compact regular honeycombs:

More information Image, Symbols ...
More information Space, S3 ...

Truncated order-5 cubic honeycomb

More information ...

The truncated order-5 cubic honeycomb, , has truncated cube and icosahedron cells, with a pentagonal pyramid vertex figure.

It can be seen as analogous to the 2D hyperbolic truncated order-5 square tiling, t{4,5}, with truncated square and pentagonal faces:

It is similar to the Euclidean (order-4) truncated cubic honeycomb, t{4,3,4}, which has octahedral cells at the truncated vertices.

More information Image, Symbols ...

Bitruncated order-5 cubic honeycomb

The bitruncated order-5 cubic honeycomb is the same as the bitruncated order-4 dodecahedral honeycomb.

Cantellated order-5 cubic honeycomb

More information ...

The cantellated order-5 cubic honeycomb, , has rhombicuboctahedron, icosidodecahedron, and pentagonal prism cells, with a wedge vertex figure.

It is similar to the Euclidean (order-4) cantellated cubic honeycomb, rr{4,3,4}:

More information Four cantellated regular compact honeycombs in H3, Image ...

Cantitruncated order-5 cubic honeycomb

More information ...

The cantitruncated order-5 cubic honeycomb, , has truncated cuboctahedron, truncated icosahedron, and pentagonal prism cells, with a mirrored sphenoid vertex figure.

It is similar to the Euclidean (order-4) cantitruncated cubic honeycomb, tr{4,3,4}:

More information Image, Symbols ...

Runcinated order-5 cubic honeycomb

More information ...

The runcinated order-5 cubic honeycomb or runcinated order-4 dodecahedral honeycomb , has cube, dodecahedron, and pentagonal prism cells, with an irregular triangular antiprism vertex figure.

It is analogous to the 2D hyperbolic rhombitetrapentagonal tiling, rr{4,5}, with square and pentagonal faces:

It is similar to the Euclidean (order-4) runcinated cubic honeycomb, t0,3{4,3,4}:

More information Image, Symbols ...

Runcitruncated order-5 cubic honeycomb

More information ...

The runcitruncated order-5 cubic honeycomb or runcicantellated order-4 dodecahedral honeycomb, , has truncated cube, rhombicosidodecahedron, pentagonal prism, and octagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.

It is similar to the Euclidean (order-4) runcitruncated cubic honeycomb, t0,1,3{4,3,4}:

More information Four runcitruncated regular compact honeycombs in H3, Image ...

Runcicantellated order-5 cubic honeycomb

The runcicantellated order-5 cubic honeycomb is the same as the runcitruncated order-4 dodecahedral honeycomb.

Omnitruncated order-5 cubic honeycomb

More information ...

The omnitruncated order-5 cubic honeycomb or omnitruncated order-4 dodecahedral honeycomb, , has truncated icosidodecahedron, truncated cuboctahedron, decagonal prism, and octagonal prism cells, with an irregular tetrahedral vertex figure.

It is similar to the Euclidean (order-4) omnitruncated cubic honeycomb, t0,1,2,3{4,3,4}:

More information Three omnitruncated regular compact honeycombs in H3, Image ...

Alternated order-5 cubic honeycomb

More information ...

In 3-dimensional hyperbolic geometry, the alternated order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). With Schläfli symbol h{4,3,5}, it can be considered a quasiregular honeycomb, alternating icosahedra and tetrahedra around each vertex in an icosidodecahedron vertex figure.

It has 3 related forms: the cantic order-5 cubic honeycomb, , the runcic order-5 cubic honeycomb, , and the runcicantic order-5 cubic honeycomb, .

Cantic order-5 cubic honeycomb

More information ...

The cantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h2{4,3,5}. It has icosidodecahedron, truncated icosahedron, and truncated tetrahedron cells, with a rectangular pyramid vertex figure.

Runcic order-5 cubic honeycomb

More information ...

The runcic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h3{4,3,5}. It has dodecahedron, rhombicosidodecahedron, and tetrahedron cells, with a triangular frustum vertex figure.

Runcicantic order-5 cubic honeycomb

More information ...

The runcicantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h2,3{4,3,5}. It has truncated dodecahedron, truncated icosidodecahedron, and truncated tetrahedron cells, with an irregular tetrahedron vertex figure.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups

Share this article:

This article uses material from the Wikipedia article Order-5_cubic_honeycomb, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.