7-polytope

Uniform 7-polytope

Uniform 7-polytope

Polytope


In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

Graphs of three regular and related uniform polytopes

7-simplex

Rectified 7-simplex

Truncated 7-simplex

Cantellated 7-simplex

Runcinated 7-simplex

Stericated 7-simplex

Pentellated 7-simplex

Hexicated 7-simplex

7-orthoplex

Truncated 7-orthoplex

Rectified 7-orthoplex

Cantellated 7-orthoplex

Runcinated 7-orthoplex

Stericated 7-orthoplex

Pentellated 7-orthoplex

Hexicated 7-cube

Pentellated 7-cube

Stericated 7-cube

Cantellated 7-cube

Runcinated 7-cube

7-cube

Truncated 7-cube

Rectified 7-cube

7-demicube

Cantic 7-cube

Runcic 7-cube

Steric 7-cube

Pentic 7-cube

Hexic 7-cube

321

231

132

A uniform 7-polytope is one whose symmetry group is transitive on vertices and whose facets are uniform 6-polytopes.

Regular 7-polytopes

Regular 7-polytopes are represented by the Schläfli symbol {p,q,r,s,t,u} with u {p,q,r,s,t} 6-polytopes facets around each 4-face.

There are exactly three such convex regular 7-polytopes:

  1. {3,3,3,3,3,3} - 7-simplex
  2. {4,3,3,3,3,3} - 7-cube
  3. {3,3,3,3,3,4} - 7-orthoplex

There are no nonconvex regular 7-polytopes.

Characteristics

The topology of any given 7-polytope is defined by its Betti numbers and torsion coefficients.[1]

The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers.[1]

Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients.[1]

Uniform 7-polytopes by fundamental Coxeter groups

Uniform 7-polytopes with reflective symmetry can be generated by these four Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:

More information #, Coxeter group ...
More information Prismatic finite Coxeter groups, # ...

The A7 family

The A7 family has symmetry of order 40320 (8 factorial).

There are 71 (64+8-1) forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. All 71 are enumerated below. Norman Johnson's truncation names are given. Bowers names and acronym are also given for cross-referencing.

See also a list of A7 polytopes for symmetric Coxeter plane graphs of these polytopes.

More information A7, # ...

The B7 family

The B7 family has symmetry of order 645120 (7 factorial x 27).

There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. Johnson and Bowers names.

See also a list of B7 polytopes for symmetric Coxeter plane graphs of these polytopes.

More information B7, # ...

The D7 family

The D7 family has symmetry of order 322560 (7 factorial x 26).

This family has 3×32−1=95 Wythoffian uniform polytopes, generated by marking one or more nodes of the D7 Coxeter-Dynkin diagram. Of these, 63 (2×32−1) are repeated from the B7 family and 32 are unique to this family, listed below. Bowers names and acronym are given for cross-referencing.

See also list of D7 polytopes for Coxeter plane graphs of these polytopes.

More information D7, # ...

The E7 family

The E7 Coxeter group has order 2,903,040.

There are 127 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.

See also a list of E7 polytopes for symmetric Coxeter plane graphs of these polytopes.

More information E7, # ...

Regular and uniform honeycombs

Coxeter-Dynkin diagram correspondences between families and higher symmetry within diagrams. Nodes of the same color in each row represent identical mirrors. Black nodes are not active in the correspondence.

There are five fundamental affine Coxeter groups and sixteen prismatic groups that generate regular and uniform tessellations in 6-space:

More information , ...

Regular and uniform tessellations include:

  • , 17 forms
  • , [4,34,4], 71 forms
  • , [31,1,33,4], 95 forms, 64 shared with , 32 new
  • , [31,1,32,31,1], 41 unique ringed permutations, most shared with and , and 6 are new. Coxeter calls the first one a quarter 6-cubic honeycomb.
    • =
    • =
    • =
    • =
    • =
    • =
  • : [32,2,2], 39 forms
    • Uniform 222 honeycomb: represented by symbols {3,3,32,2},
    • Uniform t4(222) honeycomb: 4r{3,3,32,2},
    • Uniform 0222 honeycomb: {32,2,2},
    • Uniform t2(0222) honeycomb: 2r{32,2,2},
More information , x ...

Regular and uniform hyperbolic honeycombs

There are no compact hyperbolic Coxeter groups of rank 7, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 3 paracompact hyperbolic Coxeter groups of rank 7, each generating uniform honeycombs in 6-space as permutations of rings of the Coxeter diagrams.

= [3,3[6]]:
= [31,1,3,32,1]:
= [4,3,3,32,1]:

Notes on the Wythoff construction for the uniform 7-polytopes

The reflective 7-dimensional uniform polytopes are constructed through a Wythoff construction process, and represented by a Coxeter-Dynkin diagram, where each node represents a mirror. An active mirror is represented by a ringed node. Each combination of active mirrors generates a unique uniform polytope. Uniform polytopes are named in relation to the regular polytopes in each family. Some families have two regular constructors and thus may be named in two equally valid ways.

Here are the primary operators available for constructing and naming the uniform 7-polytopes.

The prismatic forms and bifurcating graphs can use the same truncation indexing notation, but require an explicit numbering system on the nodes for clarity.

More information Operation, Extended Schläfli symbol ...

References

  1. Richeson, D.; Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy, Princeton, 2008.
  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • A. Boole Stott: Geometrical deduction of semiregular from regular polytopes and space fillings, Verhandelingen of the Koninklijke academy van Wetenschappen width unit Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, M.S. Longuet-Higgins und J.C.P. Miller: Uniform Polyhedra, Philosophical Transactions of the Royal Society of London, Londne, 1954
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.doc
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Klitzing, Richard. "7D uniform polytopes (polyexa)".
More information Family, Regular polygon ...

Share this article:

This article uses material from the Wikipedia article 7-polytope, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.