List_of_Intel_CPU_microarchitectures

List of Intel CPU microarchitectures

List of Intel CPU microarchitectures

Add article description


The following is a partial list of Intel CPU microarchitectures. The list is incomplete, additional details can be found in Intel's Tick–tock model, Process–architecture–optimization model and Template:Intel processor roadmap.

x86 microarchitectures

More information Year, Micro­architecture ...

16-bit

8086
first x86 processor; initially a temporary substitute for the iAPX 432 to compete with Motorola, Zilog, and National Semiconductor and to top the successful Z80. 8088 version, with an 8-bit bus, used in the original IBM Personal Computer.
186
included a DMA controller, interrupt controller, timers, and chip select logic. A small number of additional instructions. The 80188 was a version with an 8-bit bus.
286
first x86 processor with protected mode including segmentation based virtual memory management. Performance improved by a factor of 3 to 4 over 8086. Included instructions relating to protected mode. The 80286 had a 24-bit address bus.

32-bit (IA-32)

i386
first 32-bit x86 processor. Introduced paging on top of segmentation which is the most commonly used memory protection technology in modern operating systems ever since. Many additional powerful and valuable new instructions.
i486
Intel's second generation of 32-bit x86 processors, introduced built-in floating point unit (FPU), 8 KB on-chip L1 cache, and pipelining. Faster per MHz than the 386. Small number of new instructions.
P5
original Pentium microprocessors, first x86 processor with super-scalar architecture and branch prediction.
P6
used in Pentium Pro, Pentium II, Pentium II Xeon, Pentium III, and Pentium III Xeon microprocessors. First x86 processor to support SIMD instruction with XMM register implemented, RISC μop decode scheme, integrated register renaming and out-of-order execution. Some important new instructions, including conditional moves, which allow the avoidance of costly branch instructions. Added 36-bit physical memory addressing, "Physical Address Extension (PAE)".
NetBurst
commonly referred to as P7 although its internal name was P68 (P7 was used for Itanium). Used in Pentium 4, Pentium D, and some Xeon microprocessors. Very long pipeline. The Prescott was a major architectural revision. Later revisions were the first to feature Intel's x86-64 architecture, enhanced branch prediction and trace cache, and eventually support was added for the NX (No eXecute) bit to implement executable-space protection.

64-bit (x86-64)

Core
reengineered P6-based microarchitecture used in Intel Core 2 and Xeon microprocessors, built on a 65 nm process, supporting x86-64 level SSE instruction and macro-op fusion and enhanced micro-op fusion with a wider front end and decoder, larger out-of-order core and renamed register, support loop stream detector and large shadow register file.
  • Penryn: 45 nm shrink of the Core microarchitecture with larger cache, higher FSB and clock speeds, SSE4.1 instructions, support for XOP and F/SAVE and F/STORE instructions, enhanced register alias table and larger integer register file.
Nehalem
released November 17, 2008, built on a 45 nm process and used in the Core i7, Core i5, Core i3 microprocessors. Incorporates the memory controller into the CPU die. Added important powerful new instructions, SSE4.2.
  • Westmere: 32 nm shrink of the Nehalem microarchitecture with several new features.
Sandy Bridge
32 nm microarchitecture, released January 9, 2011. Formerly called Gesher but renamed in 2007.[2] First x86 to introduce 256 bit AVX instruction set and implementation of YMM registers.
  • Ivy Bridge: successor to Sandy Bridge, using 22 nm process, released in April 2012.
Haswell
22 nm microarchitecture, released June 3, 2013. Added a number of new instructions, including AVX2 and FMA.
  • Broadwell: 14 nm derivative of the Haswell microarchitecture, released in September 2014. Three-cycle FMUL latency, 64 entry scheduler. Formerly called Rockwell.
Skylake
14 nm microarchitecture, released August 5, 2015.
  • Kaby Lake: successor to Skylake, released in August 2016, broke Intel's Tick-Tock schedule due to delays with the 10 nm process.
    • Amber Lake: ultra low power, mobile-only successor to Kaby Lake, using 14+ nm process, released in August 2018 (no architecture changes)[3]
    • Whiskey Lake: mobile-only successor to Kaby Lake Refresh, using 14++ nm process, released in August 2018 (has hardware mitigations for some vulnerabilities)[3]
  • Skylake-X: high-end desktop, workstation and server microarchitecture, released on June 19, 2017 (HEDT), July 11, 2017 (SP) and August 29, 2017 (W). Introduces support for AVX-512 instruction set.
  • Coffee Lake: successor to Kaby Lake, using 14++ nm process, released in October 2017
  • Cascade Lake: server and high-end desktop successor to Kaby Lake-X and Skylake-X, using 14++ nm process, released in April 2019
  • Comet Lake: successor to Coffee Lake, using 14++ nm process, released in August 2019[4]
  • Cooper Lake: server-only, optimized for AI oriented workloads using bfloat16, with limited availability only to Intel priority partners, using 14++ nm process, released in 2020[5][6]
Palm Cove
After releasing the Palm Cove core, Intel has changed their microarchitecture naming scheme, decoupling the CPU cores from their manufacturing nodes.[7][8]
Successor to Skylake (canceled), includes the AVX-512 instruction set.[9][10]
  • Cannon Lake: mobile-only successor of Kaby Lake, using Intel's 10 nm process, first and only microarchitecture to implement the Palm Cove core, released in May 2018. Formerly called Skymont, discontinued in December 2019.[11]
Sunny Cove
Successor to the Palm Cove core, first non-Atom core to include hardware acceleration for SHA hashing algorithms.[12]
  • Ice Lake: low power, mobile-only successor to Whiskey Lake, using 10 nm process, released in September 2019
  • Lakefield: mobile-only, Intel's first hybrid processor, released in June 2020. Sunny Cove is used in the singular performance core (P-core) of Lakefield processors.[13] AVX and more advanced instruction sets are disabled due to the E-core not supporting them.
  • Ice Lake-SP: server-only successor to Cascade Lake, using 10 nm process, released in April 2021[5][14]
Cypress Cove
Backport of Sunny Cove to Intel's 14 nm process
Willow Cove
Successor to the Sunny Cove core, includes new security features and redesigns the cache subsystem.[18]
  • Tiger Lake: successor to Ice Lake, using Intel's 10 nm SuperFin (10SF) process, released in Q4 2020
Golden Cove
Successor to the Willow Cove core, includes improvements to performance and power efficiency. Also includes new instructions.[19]
  • Alder Lake: hybrid processor, succeeds Rocket Lake and Tiger Lake; uses Intel 7 process (previously known as 10ESF),[20] released on November 4, 2021.[21] Golden Cove is used in P-cores of Alder Lake processors.[22]
  • Sapphire Rapids: server and workstation-only, successor to Ice Lake-SP, manufactured on Intel 7 process,[20][23] released on January 10, 2023. Introduces AMX.
Raptor Cove
A refresh of Golden Cove with increased L2 and L3 caches and core clocks.
  • Raptor Lake: successor to Alder Lake with increased cache sizes, core clocks and the number of E-cores, released on October 20, 2022. Manufactured using Intel 7 process. Raptor Cove is used in the P-cores while the E-cores are still implemented using Gracemont microarchitecture.

x86 ULV (Atom)

Bonnell
45 nm, low-power, in-order microarchitecture for use in Atom processors.
  • Saltwell: 32 nm shrink of the Bonnell microarchitecture.
Silvermont
22 nm, out-of-order microarchitecture for use in Atom processors, released on May 6, 2013.
  • Airmont: 14 nm shrink of the Silvermont microarchitecture.
Goldmont
14 nm Atom microarchitecture iteration after Silvermont but borrows heavily from Skylake processors (e.g., GPU), released in April 2016.[24][25]
  • Goldmont Plus: successor to Goldmont microarchitecture, still based on the 14 nm process, released on December 11, 2017.
Tremont
10 nm Atom microarchitecture iteration after Goldmont Plus.[26]
  • Lakefield: mobile-only, Intel's first hybrid processor, released in June 2020. Tremont is used in efficiency cores (E-cores) of Lakefield processors.[13]
  • Jasper Lake: Celeron and Pentium Silver desktop and mobile processors, released in Q1 2021.
  • Elkhart Lake: embedded processors targeted at IoT, released in Q1 2021.
Gracemont
Intel 7 process[20] Atom microarchitecture iteration after Tremont. First Atom class core with AVX and AVX2 support.
  • Alder Lake: hybrid processor, succeeds Rocket Lake and Tiger Lake, released on November 4, 2021. Gracemont is used in E-cores of Alder Lake processors.[22]
  • Raptor Lake: a refresh of Alder Lake, released on October 20, 2022.

Other microarchitectures

IA-64 (Itanium)

Merced
original Itanium microarchitecture. Used only in the first Itanium microprocessors.
McKinley
enhanced microarchitecture used in the first two generations of the Itanium 2 microprocessor. Madison is the 130 nm version.
Montecito
enhanced McKinley microarchitecture used in the Itanium 2 9000- and 9100-series of processors. Added dual core, coarse multithreading, and other improvements. The Montvale update added demand-based switching (SpeedStep) and core-level lockstep execution.
Tukwila
enhanced microarchitecture used in the Itanium 9300 series of processors. Added quad core, an integrated memory controller, QuickPath Interconnect, and other improvements e.g. a more active SoEMT.
Poulson
Itanium processor featuring an all-new microarchitecture.[27] 8 cores, decoupling in pipeline and in multithreading. 12-wide issue with partial out-of-order execution.[28]
Kittson
the last Itanium. It has the same microarchitecture as Poulson, but slightly higher clock speed for the top two models.

Miscellaneous

XScale
a microarchitecture implementing the ARM architecture instruction set.
Larrabee (cancelled 2010)
multi-core in-order x86-64 updated version of P5 microarchitecture, with wide SIMD vector units and texture sampling hardware for use in graphics. Cores derived from this microarchitecture are called MIC (Many Integrated Core).

Roadmap

Pentium 4 / Core lines

More information Fabprocess, Micro- arch ...
  1. Cascade Lake and Cooper Lake microprocessors have additional instructions that enable Intel Deep Learning Boost.
  2. retail availability
  3. Previously known as 10nm Enhanced Super Fin or 10ESF.[20]

Atom lines[58]

More information Fabri-cation process, Micro-archi- tecture ...

See also


References

  1. Rant, Jon; "Extending the Legacy of Leadership: The 80386 Arrives", Intel Corporation, Special 32-Bit Issue Solutions, November/December 1985, page 2
  2. "An Update On Our Graphics-related Programs". May 25, 2010.
  3. Kennedy, Patrick (2020-03-16). "Intel Cooper Lake Rationalized Still Launching 1H 2020". ServeTheHome. Retrieved 2020-03-18.
  4. Paul, Ian (10 July 2020). "CPUs Decoded: Understanding Intel's Microarchitecture Names". How-To Geek. Retrieved 2021-04-06.
  5. Cutress, Ian. "Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review". www.anandtech.com. Retrieved 2021-04-06.
  6. "Palm Cove - Microarchitectures - Intel - WikiChip". en.wikichip.org. Retrieved 2020-01-05.
  7. "New Intel Processors Accelerate 5G Network Transformation". Newsroom.intel.com. 2021-04-06. Retrieved 2022-05-08.
  8. Cutress, Dr Ian. "Intel Alder Lake: Confirmed x86 Hybrid with Golden Cove and Gracemont for 2021". www.anandtech.com. Retrieved 2021-04-10.
  9. Cutress, Dr Ian. "Intel's Process Roadmap to 2025: with 4nm, 3nm, 20A and 18A?!". www.anandtech.com. Retrieved 2021-07-27.
  10. Cutress, Ian; Frumusanu, Andrei (2021-08-19). "Intel Architecture Day 2021: Alder Lake, Golden Cove, and Gracemont Detailed". AnandTech. Retrieved 2021-08-25.
  11. Anton Shilov (June 19, 2007). "Intel Plans to change Itanium Micro-Architecture". X-bit Labs. Archived from the original on October 5, 2007. Retrieved 2007-10-05.
  12. David Kanter (2011-05-18). "Poulson: The Future of Itanium Servers". Realworldtech.com. Retrieved 2022-05-08.
  13. Crothers, Brooke (2009-02-10). "Intel moves up rollout of new chips | Nanotech - The Circuits Blog - CNET News". News.cnet.com. Retrieved 2014-02-25.
  14. "ARK | Your source for information on Intel products". Intel. 2013-05-30. Archived from the original on 2013-05-30. Retrieved 2013-05-30.{{cite web}}: CS1 maint: unfit URL (link)
  15. Mark Bohr (Intel Senior Fellow, Logic Technology Development) (2009-02-10). "Intel 32nm Technology" (PDF).
  16. "Leaked specifications of Haswell GT1/GT2/GT3 IGP". Tech News Pedia. 2012-05-20. Archived from the original on 2012-09-19. Retrieved 2014-02-25.
  17. Windeck, Christof (30 April 2017). "Intel Xeon Gold, Platinum: Skylake-SP für Server "Mitte Sommer"". heise.de. Retrieved 2 May 2017.
  18. online, heise (21 August 2019). "Comet Lake-U: 15-Watt-CPUs für Notebook-CPUs mit sechs Kernen". c't Magazin (in German). Retrieved 2019-08-21.
  19. "Intel streicht Cooper-Lake-Prozessoren für viele Server" [Intel is dropping Cooper Lake processors for many servers]. heise online (in German). 17 March 2020. Retrieved 2020-03-17.
  20. Kennedy, Patrick (2020-03-16). "Intel Cooper Lake Rationalized Still Launching 1H 2020". ServeTheHome. Retrieved 2020-03-17.
  21. "Intel "Rocket Lake-S": 11. Core-i-Generation mit mehr Rechenleistung pro Takt". heise online (in German). 29 October 2020. Retrieved 2020-10-29.
  22. Bright, Peter (2018-12-12). "Intel unveils a new architecture for 2019: Sunny Cove". Ars Technica. Retrieved 2018-12-12.
  23. "Ice Lake Processor Family". Intel. Retrieved 2018-12-12.
  24. "Intels neuer Anlauf mit "Sunny Cove", Gen-11-GPU und Chiplets". heise online (in German). 12 December 2018. Retrieved 2018-12-12.
  25. Hiroshige, Goto. "Intel Products for Tablets & SmartPhones" (PDF). 標準. Impress. Archived from the original (PDF) on 2013-11-14.
  26. "Import Data and Price of anniedale". Archived from the original on 2015-05-17. Retrieved 2015-09-23.
  27. "Products (Formerly Braswell)". Intel ARK (Product Specs). Retrieved 5 April 2016.
  28. Smith, Ryan; Cutress, Ian (29 April 2016). "Intel's Changing Future: Smartphone SoCs Broxton & SoFIA Officially Canceled". Anandtech.com. Retrieved 29 June 2016.
  29. "Products (Formerly Apollo Lake)". Intel ARK (Product Specs). Retrieved 6 January 2016.
  30. "Products (Formerly Denverton)". Intel ARK (Product Specs). Retrieved 6 January 2016.
  31. "Products (Formerly Gemini Lake)". Intel ARK (Product Specs). Retrieved 11 December 2017.
  32. "Products (Formerly Gemini Lake Refresh)". Intel ARK (Product Specs). Retrieved 4 November 2019.
  33. "Products formerly Lakefield". Intel ARK (Product Specs).
  34. "Products formerly Elkhart Lake". Intel ARK (Product Specs).
  35. "Products formerly Snow Ridge". Intel ARK (Product Specs).
  36. "Products formerly Alder Lake". Intel ARK (Product Specs).

Share this article:

This article uses material from the Wikipedia article List_of_Intel_CPU_microarchitectures, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.