Prismatic_uniform_4-polytope

Prismatic uniform 4-polytope

Prismatic uniform 4-polytope

Type of uniform 4-polytope in four-dimensional geography


In four-dimensional geometry, a prismatic uniform 4-polytope is a uniform 4-polytope with a nonconnected Coxeter diagram symmetry group.[citation needed] These figures are analogous to the set of prisms and antiprism uniform polyhedra, but add a third category called duoprisms, constructed as a product of two regular polygons.

A cubic prism, {4,3}×{}, is a lower symmetry construction of the regular tesseract, {4,3,3}, as a prism of two parallel cubes, as seen in this Schlegel diagram

The prismatic uniform 4-polytopes consist of two infinite families:

  • Polyhedral prisms: products of a line segment and a uniform polyhedron. This family is infinite because it includes prisms built on 3-dimensional prisms and antiprisms.
  • Duoprisms: product of two regular polygons.

Convex polyhedral prisms

The most obvious family of prismatic 4-polytopes is the polyhedral prisms, i.e. products of a polyhedron with a line segment. The cells of such a 4-polytope are two identical uniform polyhedra lying in parallel hyperplanes (the base cells) and a layer of prisms joining them (the lateral cells). This family includes prisms for the 75 nonprismatic uniform polyhedra (of which 18 are convex; one of these, the cube-prism, is listed above as the tesseract).[citation needed]

There are 18 convex polyhedral prisms created from 5 Platonic solids and 13 Archimedean solids as well as for the infinite families of three-dimensional prisms and antiprisms.[citation needed] The symmetry number of a polyhedral prism is twice that of the base polyhedron.

Tetrahedral prisms: A3 × A1

More information #, Johnson Name (Bowers style acronym) ...

Octahedral prisms: BC3 × A1

More information #, Johnson Name (Bowers style acronym) ...

Icosahedral prisms: H3 × A1

More information #, Johnson Name (Bowers style acronym) ...

Duoprisms: [p] × [q]

Set of uniform p,q duoprisms

3-3

3-4

3-5

3-6

3-7

3-8

4-3

4-4

4-5

4-6

4-7

4-8

5-3

5-4

5-5

5-6

5-7

5-8

6-3

6-4

6-5

6-6

6-7

6-8

7-3

7-4

7-5

7-6

7-7

7-8

8-3

8-4

8-5

8-6

8-7

8-8

The second is the infinite family of uniform duoprisms, products of two regular polygons.

Their Coxeter diagram is of the form

This family overlaps with the first: when one of the two "factor" polygons is a square, the product is equivalent to a hyperprism whose base is a three-dimensional prism. The symmetry number of a duoprism whose factors are a p-gon and a q-gon (a "p,q-duoprism") is 4pq if pq; if the factors are both p-gons, the symmetry number is 8p2. The tesseract can also be considered a 4,4-duoprism.

The elements of a p,q-duoprism (p ≥ 3, q ≥ 3) are:

  • Cells: p q-gonal prisms, q p-gonal prisms
  • Faces: pq squares, p q-gons, q p-gons
  • Edges: 2pq
  • Vertices: pq

There is no uniform analogue in four dimensions to the infinite family of three-dimensional antiprisms with the exception of the great duoantiprism.

Infinite set of p-q duoprism - - p q-gonal prisms, q p-gonal prisms:

  • 3-3 duoprism - - 6 triangular prisms
  • 3-4 duoprism - - 3 cubes, 4 triangular prisms
  • 4-4 duoprism - - 8 cubes (same as tesseract)
  • 3-5 duoprism - - 3 pentagonal prisms, 5 triangular prisms
  • 4-5 duoprism - - 4 pentagonal prisms, 5 cubes
  • 5-5 duoprism - - 10 pentagonal prisms
  • 3-6 duoprism - - 3 hexagonal prisms, 6 triangular prisms
  • 4-6 duoprism - - 4 hexagonal prisms, 6 cubes
  • 5-6 duoprism - - 5 hexagonal prisms, 6 pentagonal prisms
  • 6-6 duoprism - - 12 hexagonal prisms
  • ...

Polygonal prismatic prisms

The infinite set of uniform prismatic prisms overlaps with the 4-p duoprisms: (p≥3) - - p cubes and 4 p-gonal prisms - (All are the same as 4-p duoprism)

  • Triangular prismatic prism - - 3 cubes and 4 triangular prisms - (same as 3-4 duoprism)
  • Square prismatic prism - - 4 cubes and 4 cubes - (same as 4-4 duoprism and same as tesseract)
  • Pentagonal prismatic prism - - 5 cubes and 4 pentagonal prisms - (same as 4-5 duoprism)
  • Hexagonal prismatic prism - - 6 cubes and 4 hexagonal prisms - (same as 4-6 duoprism)
  • Heptagonal prismatic prism - - 7 cubes and 4 heptagonal prisms - (same as 4-7 duoprism)
  • Octagonal prismatic prism - - 8 cubes and 4 octagonal prisms - (same as 4-8 duoprism)
  • ...

Uniform antiprismatic prism

The infinite sets of uniform antiprismatic prisms or antiduoprisms are constructed from two parallel uniform antiprisms: (p≥3) - - 2 p-gonal antiprisms, connected by 2 p-gonal prisms and 2p triangular prisms.

More information Name, s{2,2}×{} ...

A p-gonal antiprismatic prism has 4p triangle, 4p square and 4 p-gon faces. It has 10p edges, and 4p vertices.

References

  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
    • (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Four-dimensional Archimedean Polytopes (German), Marco Möller, 2004 PhD dissertation
  • Klitzing, Richard. "4D uniform polytopes (polychora)".
More information Family, Regular polygon ...

Share this article:

This article uses material from the Wikipedia article Prismatic_uniform_4-polytope, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.