List_of_mathematical_constants

List of mathematical constants

List of mathematical constants

Add article description


A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems.[1] For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery.

The column headings may be clicked to sort the table alphabetically, by decimal value, or by set. Explanations of the symbols in the right hand column can be found by clicking on them.

List

More information , ...

Mathematical constants sorted by their representations as continued fractions

The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one. Decimal representations are rounded or padded to 10 places if the values are known.

More information , ...

Sequences of constants

More information , ...

See also

Notes

  1. Both i and i are roots of this equation, though neither root is truly "positive" nor more fundamental than the other as they are algebraically equivalent. The distinction between signs of i and i is in some ways arbitrary, but a useful notational device. See imaginary unit for more information.

    References

    1. Weisstein, Eric W. "Constant". mathworld.wolfram.com. Retrieved 2020-08-08.
    2. Hartl, Michael. "100,000 digits of Tau". Tau Day. Retrieved 22 January 2023.
    3. Vijaya AV (2007). Figuring Out Mathematics. Dorling Kindcrsley (India) Pvt. Lid. p. 15. ISBN 978-81-317-0359-5.
    4. P A J Lewis (2008). Essential Mathematics 9. Ratna Sagar. p. 24. ISBN 9788183323673.
    5. Timothy Gowers; June Barrow-Green; Imre Leade (2007). The Princeton Companion to Mathematics. Princeton University Press. p. 316. ISBN 978-0-691-11880-2.
    6. Kapusta, Janos (2004), "The square, the circle, and the golden proportion: a new class of geometrical constructions" (PDF), Forma, 19: 293–313, archived from the original (PDF) on 2020-09-18, retrieved 2022-01-28.
    7. Kim Plofker (2009), Mathematics in India, Princeton University Press, ISBN 978-0-691-12067-6, pp. 54–56.
    8. Plutarch. "718ef". Quaestiones convivales VIII.ii. Archived from the original on 2009-11-19. Retrieved 2019-05-24. And therefore Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavoring to bring down the doubling the cube to mechanical operations
    9. Christensen, Thomas (2002), The Cambridge History of Western Music Theory, Cambridge University Press, p. 205, ISBN 978-0521686983
    10. Koshy, Thomas (2017). Fibonacci and Lucas Numbers with Applications (2 ed.). John Wiley & Sons. ISBN 9781118742174. Retrieved 14 August 2018.
    11. Keith J. Devlin (1999). Mathematics: The New Golden Age. Columbia University Press. p. 66. ISBN 978-0-231-11638-1.
    12. Hugo Duminil-Copin & Stanislav Smirnov (2011). The connective constant of the honeycomb lattice √ (2 + √ 2) (PDF). Université de Geneve.
    13. Richard J. Mathar (2013). "Circumscribed Regular Polygons". arXiv:1301.6293 [math.MG].
    14. E.Kasner y J.Newman. (2007). Mathematics and the Imagination. Conaculta. p. 77. ISBN 978-968-5374-20-0.
    15. O'Connor, J J; Robertson, E F. "The number e". MacTutor History of Mathematics.
    16. Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadeland; William B. Jones (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 182. ISBN 978-1-4020-6948-2.
    17. Cajori, Florian (1991). A History of Mathematics (5th ed.). AMS Bookstore. p. 152. ISBN 0-8218-2102-4.
    18. O'Connor, J. J.; Robertson, E. F. (September 2001). "The number e". The MacTutor History of Mathematics archive. Retrieved 2009-02-02.
    19. J. Coates; Martin J. Taylor (1991). L-Functions and Arithmetic. Cambridge University Press. p. 333. ISBN 978-0-521-38619-7.
    20. Robert Baillie (2013). "Summing The Curious Series of Kempner and Irwin". arXiv:0806.4410 [math.CA].
    21. Annie Cuyt; Vigdis Brevik Petersen; Brigitte Verdonk; Haakon Waadelantl; William B. Jones. (2008). Handbook of Continued Fractions for Special Functions. Springer. p. 188. ISBN 978-1-4020-6948-2.
    22. Howard Curtis (2014). Orbital Mechanics for Engineering Students. Elsevier. p. 159. ISBN 978-0-08-097747-8.
    23. Johann Georg Soldner (1809). Théorie et tables d'une nouvelle fonction transcendante (in French). J. Lindauer, München. p. 42.
    24. Lorenzo Mascheroni (1792). Adnotationes ad calculum integralem Euleri (in Latin). Petrus Galeatius, Ticini. p. 17.
    25. Keith B. Oldham; Jan C. Myland; Jerome Spanier (2009). An Atlas of Functions: With Equator, the Atlas Function Calculator. Springer. p. 15. ISBN 978-0-387-48806-6.
    26. Nielsen, Mikkel Slot. (July 2016). Undergraduate convexity : problems and solutions. World Scientific. p. 162. ISBN 9789813146211. OCLC 951172848.
    27. Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
    28. Amoretti, F. (1855). "Sur la fraction continue [0,1,2,3,4,...]". Nouvelles annales de mathématiques. 1 (14): 40–44.
    29. L. J. Lloyd James Peter Kilford (2008). Modular Forms: A Classical and Computational Introduction. Imperial College Press. p. 107. ISBN 978-1-84816-213-6.
    30. H. M. Srivastava; Choi Junesang (2001). Series Associated With the Zeta and Related Functions. Kluwer Academic Publishers. p. 30. ISBN 978-0-7923-7054-3.
    31. James Stewart (2010). Single Variable Calculus: Concepts and Contexts. Brooks/Cole. p. 314. ISBN 978-0-495-55972-6.
    32. Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 64. ISBN 9780691141336.
    33. Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 59. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
    34. Osborne, George Abbott (1891). An Elementary Treatise on the Differential and Integral Calculus. Leach, Shewell, and Sanborn. pp. 250.
    35. Yann Bugeaud (2004). Series representations for some mathematical constants. Cambridge University Press. p. 72. ISBN 978-0-521-82329-6.
    36. Tijdeman, Robert (1976). "On the Gel'fond–Baker method and its applications". In Felix E. Browder (ed.). Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics. Vol. XXVIII.1. American Mathematical Society. pp. 241–268. ISBN 0-8218-1428-1. Zbl 0341.10026.
    37. David Cohen (2006). Precalculus: With Unit Circle Trigonometry. Thomson Learning Inc. p. 328. ISBN 978-0-534-40230-3.
    38. Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics, Second Edition. CRC Press. p. 1356. ISBN 9781420035223.
    39. Richard E. Crandall; Carl B. Pomerance (2005). Prime Numbers: A Computational Perspective. Springer. p. 80. ISBN 978-0387-25282-7.
    40. Steven Finch. Volumes of Hyperbolic 3-Manifolds (PDF). Harvard University. Archived from the original (PDF) on 2015-09-19.
    41. Agronomof, M. (1914). "Sur une suite récurrente". Mathesis. 4: 125–126.
    42. Rees, DG (1987), Foundations of Statistics, CRC Press, p. 246, ISBN 0-412-28560-6, Why 95% confidence? Why not some other confidence level? The use of 95% is partly convention, but levels such as 90%, 98% and sometimes 99.9% are also used.
    43. "Engineering Statistics Handbook: Confidence Limits for the Mean". National Institute of Standards and Technology. Archived from the original on 5 February 2008. Retrieved 4 February 2008. Although the choice of confidence coefficient is somewhat arbitrary, in practice 90%, 95%, and 99% intervals are often used, with 95% being the most commonly used.
    44. Olson, Eric T; Olson, Tammy Perry (2000), Real-Life Math: Statistics, Walch Publishing, p. 66, ISBN 0-8251-3863-9, While other stricter, or looser, limits may be chosen, the 95 percent interval is very often preferred by statisticians.
    45. Swift, MB (2009). "Comparison of Confidence Intervals for a Poisson Mean – Further Considerations". Communications in Statistics – Theory and Methods. 38 (5): 748–759. doi:10.1080/03610920802255856. S2CID 120748700. In modern applied practice, almost all confidence intervals are stated at the 95% level.
    46. Steven Finch (2014). Errata and Addenda to Mathematical Constants (PDF). Harvard.edu. p. 53. Archived from the original (PDF) on 2016-03-16. Retrieved 2013-12-17.
    47. Eric W. Weisstein (2002). CRC Concise Encyclopedia of Mathematics. Crc Press. p. 1212. ISBN 9781420035223.
    48. Horst Alzer (2002). "Journal of Computational and Applied Mathematics, Volume 139, Issue 2" (PDF). Journal of Computational and Applied Mathematics. 139 (2): 215–230. doi:10.1016/S0377-0427(01)00426-5.
    49. ECKFORD COHEN (1962). SOME ASYMPTOTIC FORMULAS IN THE THEORY OF NUMBERS (PDF). University of Tennessee. p. 220.
    50. Michael J. Dinneen; Bakhadyr Khoussainov; Prof. Andre Nies (2012). Computation, Physics and Beyond. Springer. p. 110. ISBN 978-3-642-27653-8.
    51. Pei-Chu Hu, Chung-Chun (2008). Distribution Theory of Algebraic Numbers. Hong Kong University. p. 246. ISBN 978-3-11-020536-7.
    52. Julian Havil (2003). Gamma: Exploring Euler's Constant. Princeton University Press. p. 161. ISBN 9780691141336.
    53. Aleksandr I͡Akovlevich Khinchin (1997). Continued Fractions. Courier Dover Publications. p. 66. ISBN 978-0-486-69630-0.
    54. Marek Wolf (2018). "Two arguments that the nontrivial zeros of the Riemann zeta function are irrational". Computational Methods in Science and Technology. 24 (4): 215–220. arXiv:1002.4171. doi:10.12921/cmst.2018.0000049. S2CID 115174293.
    55. Yann Bugeaud (2012). Distribution Modulo One and Diophantine Approximation. Cambridge University Press. p. 87. ISBN 978-0-521-11169-0.
    56. Laith Saadi (2004). Stealth Ciphers. Trafford Publishing. p. 160. ISBN 978-1-4120-2409-9.[permanent dead link]
    57. Annie Cuyt; Viadis Brevik Petersen; Brigitte Verdonk; William B. Jones (2008). Handbook of continued fractions for special functions. Springer Science. p. 190. ISBN 978-1-4020-6948-2.
    58. Andras Bezdek (2003). Discrete Geometry. Marcel Dekkcr, Inc. p. 150. ISBN 978-0-8247-0968-6.
    59. Lowe, I. J. (1959-04-01). "Free Induction Decays of Rotating Solids". Physical Review Letters. 2 (7): 285–287. Bibcode:1959PhRvL...2..285L. doi:10.1103/PhysRevLett.2.285. ISSN 0031-9007.
    60. Steven Finch (2007). Continued Fraction Transformation (PDF). Harvard University. p. 7. Archived from the original (PDF) on 2016-04-19. Retrieved 2015-02-28.
    61. Robin Whitty. Lieb's Square Ice Theorem (PDF).
    62. Steven Finch (2005). Class Number Theory (PDF). Harvard University. p. 8. Archived from the original (PDF) on 2016-04-19. Retrieved 2014-04-15.
    63. Francisco J. Aragón Artacho; David H. Baileyy; Jonathan M. Borweinz; Peter B. Borwein (2012). Tools for visualizing real numbers (PDF). p. 33. Archived from the original (PDF) on 2017-02-20. Retrieved 2014-01-20.
    64. Papierfalten (PDF). 1998.
    65. Gérard P. Michon (2005). Numerical Constants. Numericana.
    66. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 479. ISBN 978-3-540-67695-9. Schmutz.
    67. Waldschmidt, M. "Nombres transcendants et fonctions sigma de Weierstrass." C. R. Math. Rep. Acad. Sci. Canada 1, 111-114, 1978/79.
    68. Dusko Letic; Nenad Cakic; Branko Davidovic; Ivana Berkovic. Orthogonal and diagonal dimension fluxes of hyperspherical function (PDF). Springer.
    69. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 238. ISBN 978-3-540-67695-9.
    70. Facts On File, Incorporated (1997). Mathematics Frontiers. Infobase. p. 46. ISBN 978-0-8160-5427-5.
    71. Steven R. Finch (2003). Mathematical Constants. Cambridge University Press. p. 110. ISBN 978-3-540-67695-9.
    72. DIVAKAR VISWANATH (1999). RANDOM FIBONACCI SEQUENCES AND THE NUMBER 1.13198824... (PDF). MATHEMATICS OF COMPUTATION.
    73. Christoph Lanz. k-Automatic Reals (PDF). Technischen Universität Wien.
    74. J. B. Friedlander; A. Perelli; C. Viola; D.R. Heath-Brown; H.Iwaniec; J. Kaczorowski (2002). Analytic Number Theory. Springer. p. 29. ISBN 978-3-540-36363-7.
    75. Richard E. Crandall (2012). Unified algorithms for polylogarithm, L-series, and zeta variants (PDF). perfscipress.com. Archived from the original on 2013-04-30.{{cite book}}: CS1 maint: bot: original URL status unknown (link)
    76. RICHARD J. MATHAR (2010). "NUMERICAL EVALUATION OF THE OSCILLATORY INTEGRAL OVER exp(I pi x)x^1/x BETWEEN 1 AND INFINITY". arXiv:0912.3844 [math.CA].
    77. M.R.Burns (1999). Root constant. Marvin Ray Burns.
    78. Hardy, G. H. (2008). An introduction to the theory of numbers. E. M. Wright, D. R. Heath-Brown, Joseph H. Silverman (6th ed.). Oxford: Oxford University Press. ISBN 978-0-19-921985-8. OCLC 214305907.
    79. Jesus Guillera; Jonathan Sondow (2008). "Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent". The Ramanujan Journal. 16 (3): 247–270. arXiv:math/0506319. doi:10.1007/s11139-007-9102-0. S2CID 119131640.
    80. Steven Finch (2014). Electrical Capacitance (PDF). Harvard.edu. p. 1. Archived from the original (PDF) on 2016-04-19. Retrieved 2015-10-12.
    81. Thomas Ransford. Computation of Logarithmic Capacity (PDF). Université Laval, Quebec (QC), Canada. p. 557.[permanent dead link]
    82. Bugeaud, Yann; Queffélec, Martine (2013). "On Rational Approximation of the Binary Thue-Morse-Mahler Number". Journal of Integer Sequences. 16 (13.2.3).
    83. Wolf, Marek (22 February 2010). "Remark on the irrationality of the Brun's constant". arXiv:1002.4174 [math.NT].
    84. Holger Hermanns; Roberto Segala (2000). Process Algebra and Probabilistic Methods. Springer-Verlag. p. 270. ISBN 978-3-540-67695-9.

    Site MathWorld Wolfram.com

    Site OEIS.org

    Site OEIS Wiki

    Bibliography

    Further reading


    Share this article:

    This article uses material from the Wikipedia article List_of_mathematical_constants, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.