2022_in_paleoichthyology

2022 in paleoichthyology

2022 in paleoichthyology

Overview of the events of 2022 in paleoichthyology


This list of fossil fish research presented in 2022 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fishes, bony fishes, and other fishes that were described during the year, as well as other significant discoveries and events related to paleoichthyology that occurred in 2022.

Quick Facts List of years in paleoichthyology ...

Jawless vertebrates

More information Name, Novelty ...

Jawless vertebrate research

  • A study on the phylogenetic relationships and evolutionary history of lampreys is published by Brownstein & Near (2022), who find Mesomyzon mengae to be a member of the lamprey crown group, and argue that living lamprey biodiversity results from diversifications extending from the Cretaceous to present, rather than gradually accumulating since the Paleozoic.[8]
  • Chevrinais et al. (2022) describe the ontogeny of Euphanerops longaevus.[9]
  • Meng et al. (2022) describe new fossil material of Pterogonaspis yuhaii from the Devonian Xujiachong Formation (Yunnan, China), providing new information on the cranial anatomy of this galeaspid, including the first fossil evidence for the position of the esophagus in galeaspids.[10]
  • The first detailed description of the complex of external endolymphatic structures in headshields of members of the genus Tremataspis from the Silurian of Estonia, with tiny platelets located within the openings of the endolymphatic duct and possibly functioning as a sieve that allowed or prevented material from entering the inner ear, is published by Märss, Wilson & Viljus (2022).[11]

Placoderms

More information Name, Novelty ...

Placoderm research

  • A study on the morphology and function of the antiarch jaw apparatus is published by Lebedev et al. (2022).[14]
  • Wang & Zhu (2022) describe the squamation and scale morphology of Parayunnanolepis xitunensis, recognize at least thirteen morphotypes of scales in P. xitunensis, and interpret their findings as indicative of the high regionalization of squamation at the root of jawed vertebrates.[15]
  • Zhu et al. (2022) redescribe the pelvic region of the holotype of Parayunnanolepis xitunensis, and report that, instead of having two large plates previously designated as dermal pelvic girdles, P. xitunensis had three pairs of lateral pelvic plates and one large oval median pelvic plate.[16]
  • Trinajstic et al. (2022) report preservation of a three-dimensionally mineralized heart, thick-walled stomach and bilobed liver from members of Arthrodira from the Devonian Gogo Formation (Australia), and interpret this finding as indicative of the presence of a flat S-shaped heart separated from the liver and other abdominal organs, and of the absence of lungs in members of Arthrodira;[17] subsequently Jensen et al. (2023) question evidence of the presence of a chambered heart in the studied fossil material presented by Trinajstic et al. (2022).[18][19]

Acanthodians

More information Name, Novelty ...

Acanthodian research

  • A study aiming to quantify the completeness of the acanthodian fossil record is published by Schnetz et al. (2022).[21]
  • A study on the biomechanical properties and likely function of bony spines in front of the fins of members of the genus Machaeracanthus is published by Ferrón et al. (2022).[22]

Cartilaginous fishes

More information Name, Novelty ...

Cartilaginous fish research

  • Duffin, Lauer & Lauer (2022) describe chimaeroid egg cases from the Upper Jurassic (Tithonian) Altmühltal Formation (Germany), probably produced by Ischyodus quenstedti, and name a new ichnotaxon Chimaerotheca schernfeldensis.[35]
  • Revision of the fossil material originally attributed to Bibractopiscis niger and Orthacanthus commailli, and a study on the implications of these fossils for the knowledge of the evolution of neurocranium in "ctenacanthiforms" and xenacanthiforms, is published by Luccisano et al. (2022).[36]
  • A study on the evolutionary history of members of the genus Orthacanthus from France and on their relationships with the other European species is published by Luccisano et al. (2022).[37]
  • Greif, Ferrón & Klug (2022) describe the first known fossil cartilage remains from the Devonian Hangenberg black shale from the Moroccan Anti-Atlas, and interpret its morphology as suggestive of ctenacanth affiliation.[38]
  • Taxonomic reassessment of a hybodontiform dental assemblage from the lower Kimmeridgian of Czarnogłowy (Poland), and a study on the implications of this assemblage for the knowledge of ecology and biogeography of cartilaginous fishes prior to the Jurassic/Cretaceous transition, is published by Stumpf, Meng & Kriwet (2022)[39]
  • Fossil teeth of sharks belonging to the groups Hexanchiformes, Echinorhiniformes, Squaliformes and Lamniformes, including the first record of Protosqualus in northwestern Pacific reported to date, are described from the Upper Cretaceous Nishichirashinai and Omagari formations (Yezo Group, Japan) by Kanno et al. (2022).[40]
  • New fossil material of Xampylodon dentatus, including more complete teeth or specimens representing teeth of different positions than most previous records, and the oldest fossil material of Rolfodon tatere reported to date is described from the Upper Cretaceous (Campanian) of James Ross Island (Antarctica) by dos Santos et al. (2022).[41]
  • Feichtinger et al. (2022) describe isolated teeth of Protoxynotus misburgensis from the Santonian of Lebanon, representing the first known record of this species from the southern Tethyan Realm, and interpret this finding as indicating that Protoxynotus and Cretascymnus occupied overlapping or similar habitats during the Late Cretaceous.[42]
  • Herraiz et al. (2022) describe teeth of a member of the genus Trigonognathus from the El Ferriol outcrop (Miocene of Spain), representing the first known record of this genus from the Mediterranean realm.[43]
  • Revision of the fossil record of the genus Echinorhinus in South America is published by Bogan & Agnolín (2022), who consider Echinorhinus pozzi and Echinorhinus maremagnum to be valid species, and consider E. maremagnum to be distinct from Echinorhinus lapaoi.[44]
  • A study on the anatomy, growth and ecology of Cretodus crassidens, based on data from a specimen from the Turonian "Lastame" lithofacies of the Scaglia Rossa Veneta (Lessini Mountains, Veneto, northeastern Italy), is published by Amalfitano et al. (2022).[45]
  • A tooth of Cetorhinus huddlestoni, as well as gill rakers differing from previously described cetorhinids and referred to the same species as the tooth, are described from the Miocene Duho Formation (South Korea) by Malyshkina, Nam & Kwon (2022).[46]
  • A study aiming to determine whether the observed body forms of lamniform sharks are influenced by thermophysiology, and reevaluating the body form of Otodus megalodon proposed by Cooper et al. (2020),[47] is published by Sternes, Wood & Shimada (2022).[48]
  • A study on the putative nursery areas and body size patterns across different populations of Otodus megalodon is published by Shimada et al. (2022), who report that specimens of O. megalodon are on average larger in cooler water than those in warmer water, and argue that the previously identified nursery areas may reflect temperature-dependent trends rather than the inferred reproductive strategy.[49]
  • McCormack et al. (2022) demonstrate the use of zinc isotopes to assess the trophic level in extant and extinct sharks, and interpret their findings as indicative of dietary shifts throughout the Neogene in sharks belonging to the genera Otodus and Carcharodon, and indicating that Early Pliocene sympatric great white sharks and Otodus megalodon likely occupied a similar mean trophic level.[50]
  • Evidence from nitrogen isotope ratios in fossil teeth of members of the genus Otodus, indicating that O. megalodon occupied a higher trophic level than is known for any marine species, extinct or extant, is presented by Kast et al. (2022).[51]
  • Cooper et al. (2022) create the first three-dimensional model of the body of Otodus megalodon and use it to infer its movement and feeding ecology, interpreting it as likely able to swim great distances and to feed on prey as large as modern apex predators.[52]
  • A study on tooth marks on physeteroid bones from the Miocene Pisco Formation (Peru) is published by Benites-Palomino et al. (2022), who interpret their findings as indicating that Miocene sharks were actively targeting the foreheads of physeteroids to feed on their lipid-rich nasal complexes, with the shape and distribution of the bite marks suggesting a series of consecutive scavenging events by members of different shark species.[53]
  • A study on the evolutionary history of carcharhiniform sharks is published by Brée, Condamine & Guinot (2022), who interpret their findings as indicative of an early low diversity period followed by a radiation exacerbated since 30 million years ago, as well as indicating that variations in diversification through time were likely linked to reef expansion and temperature change.[54]
  • Greenfield, Delsate & Candoni (2022) coin a new name Toarcibatidae for the family of Toarcian batomorphs previously referred to as Archaeobatidae.[55]
  • A study on the microstructure of rostral denticles of Ischyrhiza mira is published by Cook et al. (2022)[56]
  • New record of large dermal tubercles and bucklers, including tubercles similar in morphology to "Ceratoptera unios" and dermal bucklers similar in morphology to those of the extant roughtail stingray, is reported from the Lower Pleistocene Waccamaw Formation (South Carolina, United States) by Boessenecker & Gibson (2022), who interpret this findings as likely fossils of large stingrays in excess of 3 m disc width.[57]
  • A study on the phylogenetic relationships of extant and fossil rays and skates is published by Villalobos-Segura et al. (2022).[58]
  • A study on the completeness of the chondrichthyan fossil record from Florida, aiming to determine patterns in taxonomic and ecomorphological diversity of Eocene to Pleistocene chondrichthyans from the Florida Platform, is published by Perez (2022).[59]
  • Szabó et al. (2022) describe an assemblage of cartilaginous fishes from the Miocene Tekeres Schlieren Member of the Baden Formation (Hungary), including the first known records of deepwater cartilaginous fishes from the Badenian of the Central Paratethys.[60]
  • Fossil material of a diverse shark and ray fauna is reported from the early Pleistocene of Taiwan by Lin, Lin & Shimada (2022).[61]

Ray-finned fishes

More information Name, Novelty ...

Ray-finned fish research

  • A new database of the occurrences of Paleozoic ray-finned fishes is presented by Henderson et al. (2022), who evaluate the impact of fossil record biases, as well as taxonomic and phylogenetic issues, on the knowledge of the early evolution of ray-finned fishes;[125] subsequently Henderson, Dunne & Giles (2022) use this database to study patterns of diversity of ray-finned fishes through the Paleozoic, taking the extent and impact of sampling biases into account.[126]
  • A novel mode of fang accommodation, with teeth of the lower jaw inserting into fenestrae of the upper jaw, is reported in Brazilichthys macrognathus by Figueroa & Andrews (2022).[127]
  • Redescription and a study on the affinities of Toyemia is published by Bakaev & Kogan (2022).[128]
  • Redescription of the anatomy and a study on the affinities of Brachydegma caelatum is published by Argyriou, Giles & Friedman (2022).[129]
  • Osteoderms providing evidence of presence of large sturgeons (within the upper size bracket for Acipenseridae) in early-middle Paleocene freshwater ecosystems of western North America are described from the Fort Union Formation (Montana, United States) by Brownstein (2022).[130]
  • Fossil material of a member or a relative of the genus Eomesodon, representing the oldest record of pycnodonts from East Gondwana reported to date, is described from the Middle Jurassic (Bathonian) Jaisalmer Formation (Rajasthan, India) by Kumar et al. (2022).[131]
  • A study on the tooth replacement pattern and implantation in Serrasalmimus secans is published by Matsui & Kimura (2022), who interpret their findings as indicating that serrasalmimid pycnodont fish independently acquired a vertical replacement in true thecodont implantation, i.e. a characteristic tooth replacement pattern of mammals.[132]
  • A study on the phylogenetic relationships and evolutionary history of extant and extinct gars is published by Brownstein et al. (2022).[133]
  • Redescription and a study on the affinities of Saurostomus esocinus is published by Cooper & Maxwell (2022), who interpret this taxon as the basalmost transitional member of the suspension-feeding clade of pachycormids.[134]
  • A study on bone repair in response to damage in Leedsichthys problematicus is published by Johanson et al. (2022).[135]
  • Redescription and a study on the affinities of Thaumaturus intermedius is published by Micklich & Arratia (2022).[136]
  • Redescription of "Diplomystus" solignaci is published by Marramà, Khalloufi & Carnevale (2022), who interpret this fish as a paraclupeid ellimmichthyiform, and transfer it to the genus Paraclupea.[137]
  • A study on cranial morphological features that diagnose known families of catfishes, and on their implications for the knowledge of the affinities of catfishes from the Paleogene of Africa, is published by Murray & Holmes (2022), who reassess the familial placement of the Paleogene African catfishes and assign Eomacrones wilsoni to the family Bagridae sensu stricto.[138]
  • Description of new fossil material of Enchodus from the Cenomanian of Ukraine, and a revision of earlier records of Enchodus from Ukraine, is published by Kovalchuk, Barkaszi & Anfimova (2022).[139]
  • Redescription and a study on the phylogenetic affinities of Protosyngnathus sumatrensis is published by Murray (2022).[140]
  • A study on the phylogenetic affinities of fossil gobioids is published by Gierl et al. (2022).[141]
  • New specimen of Mene rhombea with extensive soft tissue preservation and striking colour patterning is described from the Eocene (Ypresian) Monte Bolca Lagerstätte (Italy) by Rossi et al. (2022).[142]
  • A study on patterns of body size evolution of tetraodontiforms in relation to paleoclimate events is published by Troyer et al. (2022).[143]
  • Přikryl et al. (2022) describe a new specimen of Archaeotetraodon winterbottomi from the Oligocene Rybnytsia Member of the Menilite Series (Ukraine), providing new information on the anatomy of this tetraodontid.[144]

Lobe-finned fishes

More information Name, Novelty ...

Lobe-finned fish research

  • Review of the phylogenetic analyses of onychodont relationships, aiming to determine the sources of discrepancies in the different phylogenetic hypotheses, is published by Ciudad Real et al. (2022).[154]
  • A study on the histology of the median fin bones and life history of Miguashaia bureaui is published by Mondéjar Fernandez et al. (2022).[155]
  • Toriño et al. (2022) describe a large mawsoniid coelacanth from the Upper Jurassic Kimmeridge Clay (United Kingdom), interpret its morphology as unexpectedly similar to the morphology of Mawsonia, and consider the studied coelacanth to be either an unknown Mawsonia-like form or a member of the lineage of Trachymetopon with some morphological characters previously assumed as diagnostic for Mawsonia.[156]
  • Description of cranial endocasts of six Paleozoic lungfish (Iowadipterus halli, Gogodipterus paddyensis, Pillararhynchus longi, Griphognathus whitei, Orlovichthys limnatis, Rhinodipterus ulrichi), and a study on the evolution of crania, brains and sensory abilities of lungfish, is published by Clement et al. (2022).[157]
  • Description of two well-preserved specimens of Youngolepis praecursor from the Devonian Xitun Formation (China), and a study on the implications of these specimens for the knowledge of the evolution of the specialized lungfish feeding mechanism, is published by Cui et al. (2022).[158]
  • A study on the anatomy of the neurocrania of Scaumenacia curta and Pentlandia macroptera is published by Boirot, Challands & Cloutier (2022), who report that the neurocranium of P. macroptera was at least partially ossified, while S. curta had a cartilaginous neurocranium, and evaluate the implications of their findings for the knowledge of paedomorphosis in lungfish evolution.[159]
  • A study on the histology of the tooth plates of Metaceratodus baibianorum from the Upper Cretaceous La Colonia Formation (Argentina) is published by Panzeri, Pereyra & Cione (2022).[160]
  • A study on the anatomy and affinities of Palaeospondylus gunni is published by Hirasawa et al. (2022), who interpret this taxon as a sarcopterygian, and likely a stem-tetrapod;[161] their conclusions are subsequently contested by Brownstein (2023).[162][163]

Other

More information Name, Novelty ...

General research

  • A study on the evolution of swimming speed in early vertebrates, inferred from caudal fin morphology of Paleozoic cyclostomes (Myxinidae and Petromyzontidae), jawless stem gnathostomes (Conodonta, Anaspida, Pteraspidomorphi, Thelodonti and Osteostraci) and placoderms, is published by Ferrón & Donoghue (2022), who interpret their findings as indicating that microsquamous taxa (thelodonts and anaspids) had higher swimming capabilities than vertebrates with rigid bony carapaces (including placoderms), that demonstrating that the rise of active nektonic vertebrates long-predated the Devonian.[166]
  • A study on the morphological similarities of Silurian and Devonian jawless and jawed vertebrates, aiming to determine which groups were most and least likely to have competed (and whether competition with jawed vertebrates was likely to cause the extinction of the majority of jawless vertebrates), is published by Scott & Anderson (2022), who don't find support for overall competitive exclusion of jawless vertebrates by jawed vertebrates.[167]
  • A study on the evolution of the vertebrate spiracular region from jawless vertebrates to tetrapods is published by Gai et al. (2022).[168]
  • A study on the mandibular morphology of Silurian and Devonian jawed vertebrates, and on the functional capabilities of their jaws, is published by Deakin et al. (2022).[169]
  • Description of the ichthyolith assemblage from the Upper Triassic Luning Formation (Nevada, United States), increasing known diversity of marine vertebrates in the western United States in the Late Triassic from four to at least 14 genera, is published by Tackett, Zierer & Clement (2022), who report evidence of the presence of taxa that were previously known only from Europe during the Late Triassic.[170]
  • Revision of the marine fish fauna from the Upper Cretaceous (Campanian) Rybushka Formation (Saratov Oblast, Russia) is published by Ebersole et al. (2022).[171]
  • A study aiming to reconstruct the fish community and oceanographic conditions off the coast of Peru during the last interglacial, based on data from sediments from the northern Humboldt Current system, is published by Salvatteci et al. (2022).[172]
  • Review of the fossil material providing information on the reproduction of extinct fishes is published by Capasso (2022), who names new ootaxa Theutonicootheca primigenia (possible egg capsule of jawless vertebrates or placoderms from the Emsian Kaub Formation, Germany), Beargulchootheca carbonifera (possible egg capsule of cartilaginous fishes from the Mississippian Bear Gulch Limestone of the Heath Formation, Montana, United States), Palaeochimaerootheca browni (egg capsule of chimaerids from the Pennsylvanian Cherokee Shale, Missouri, and Mazon Creek fossil beds, Illinois, United States), and Parascylliootheca libanica (egg capsule of parascylliids from the Cretaceous Sannine Formation, Lebanon).[173]

References

  1. Thorsteinsson, R.; Elliott, D. K. (2022). "Silurian and Devonian Heterostraci (Vertebrata) of the Canadian Arctic Archipelago". Palaeontographica Canadiana. 40: 1–348. ISBN 978-1-897095-94-2.
  2. Shan, X.; Gai, Z.; Lin, X.; Chen, Y.; Zhu, M.; Zhao, W. (2022). "The oldest eugaleaspiform fishes from the Silurian red beds in Jiangxi, South China and their stratigraphic significance". Journal of Asian Earth Sciences. 229: Article 105187. Bibcode:2022JAESc.22905187S. doi:10.1016/j.jseaes.2022.105187. S2CID 247493604.
  3. Brennan, J. M. (1952). "Two New Venezuelan Chiggers (Acarina: Trombiculidae)". The Journal of Parasitology. 38 (2): 143–146. doi:10.2307/3273833. JSTOR 3273833. PMID 14946627.
  4. Shan, X.; Zhao, W.; Gai, Z. (2022). "A New Species of Jiangxialepis (Galeaspida) from the Lower Telychian (Silurian) of Jiangxi and its Biostratigraphic Significance". Acta Geologica Sinica (English Edition). 97 (2): 393–403. doi:10.1111/1755-6724.15009. S2CID 252813209.
  5. Gai, Z.; Li, Q.; Ferrón, H. G.; Keating, J. N.; Wang, J.; Donoghue, P. C. J.; Zhu, M. (2022). "Galeaspid anatomy and the origin of vertebrate paired appendages" (PDF). Nature. 609 (7929): 959–963. Bibcode:2022Natur.609..959G. doi:10.1038/s41586-022-04897-6. hdl:1983/39f23cba-4a2b-4d8f-92fe-dbfc89869c26. PMID 36171376. S2CID 252569951.
  6. Sun, H.-R.; Gai, Z.-K.; Cai, J.-C.; Li, Q.; Zhu, M.; Zhao, W.-J. (2022). "Xitunaspis, a new eugaleaspid fish (Eugaleaspiformes, Galeaspida) from the Lower Devonian of Qujing, Yunnan". Vertebrata PalAsiatica. 60 (3): 169–183. doi:10.19615/j.cnki.2096-9899.220412.
  7. Chen, Y.; Gai, Z.; Li, Q.; Wang, J.; Peng, L.; Wei, G.; Zhu, M. (2022). "A New Family of Galeaspids (Jawless Stem-Gnathostomata) from the Early Silurian of Chongqing, Southwestern China". Acta Geologica Sinica (English Edition). 96 (2): 430–439. doi:10.1111/1755-6724.14909. S2CID 247063430.
  8. Brownstein, C. D.; Near, T. J. (2022). "Phylogenetics and the Cenozoic radiation of lampreys". Current Biology. 33 (2): 397–404.e3. doi:10.1016/j.cub.2022.12.018. PMID 36586410. S2CID 255278945.
  9. Chevrinais, M.; Morel, C.; Renaud, C. B.; Cloutier, R. (2022). "Ontogeny of Euphanerops longaevus from the Upper Devonian Miguasha Fossil-Fish-Lagerstätte and comparison with the skeletogenesis of the Sea Lamprey Petromyzon marinus". Canadian Journal of Earth Sciences. 60 (3): 350–365. doi:10.1139/cjes-2022-0062. S2CID 254529477.
  10. Meng, X.-Y.; Zhu, M.; Li, Q.; Gai, Z.-K. (2022). "New data on the cranial anatomy of Pterogonaspis (Tridensaspidae, Galeaspida) from the lower Devonian of Yunnan, China and its evolutionary implications". The Anatomical Record. doi:10.1002/ar.25098. PMID 36271627. S2CID 253063254.
  11. Märss, T.; Wilson, M. V. H.; Viljus, M. (2022). "Endolymphatic structures in headshields of the osteostracan genus Tremataspis (Agnatha) from the Silurian of Estonia". Estonian Journal of Earth Sciences. 71 (3): 135–156. doi:10.3176/earth.2022.10. S2CID 251653409.
  12. Zhu, Y.; Li, Q.; Lu, J.; Chen, Y.; Wang, J.; Gai, Z.; Zhao, W.; Wei, G.; Yu, Y.; Ahlberg, P. E.; Zhu, M. (2022). "The oldest complete jawed vertebrates from the early Silurian of China". Nature. 609 (7929): 954–958. Bibcode:2022Natur.609..954Z. doi:10.1038/s41586-022-05136-8. PMID 36171378. S2CID 252569910.
  13. Lebedev, O. A.; Johanson, Z.; Kuznetsov, A. N.; Tsessarsky, A.; Trinajstic, K.; Isakhodzayev, F. B. (2022). "Feeding in the Devonian antiarch placoderm fishes: a study based upon morphofunctional analysis of jaws". Journal of Paleontology. 96 (6): 1413–1430. Bibcode:2022JPal...96.1413L. doi:10.1017/jpa.2022.54. S2CID 250572280.
  14. Zhu, Y.-A.; Wang, Y.-J.; Qu, Q.-M.; Lu, J.; Zhu, M. (2022). "The pelvic morphology of Parayunnanolepis (Placodermi, Antiarcha) revealed by tomographic data". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.221126.
  15. Trinajstic, K.; Long, J. A.; Sanchez, S.; Boisvert, C. A.; Snitting, D.; Tafforeau, P.; Dupret, V.; Clement, A. M.; Currie, P. D.; Roelofs, B.; Bevitt, J. J.; Lee, M. S. Y.; Ahlberg, P. E. (2022). "Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstätte". Science. 377 (6612): 1311–1314. Bibcode:2022Sci...377.1311T. doi:10.1126/science.abf3289. PMID 36107996. S2CID 252310376.
  16. Jensen, B.; Moorman, A. F. M.; Wang, T.; Møller, P. R.; Icardo, J. M.; Lauridsen, H. (2023). "Comment on "Exceptional preservation of organs in Devonian placoderms from the Gogo lagerstätte"". Science. 380 (6645). eadg2748. doi:10.1126/science.adg2748. PMID 37167376. S2CID 258618457.
  17. Trinajstic, K.; Long, J. A.; Sanchez, S.; Boisvert, C. A.; Snitting, D.; Tafforeau, P.; Dupret, V.; Clement, A. M.; Currie, P. D.; Roelofs, B.; Bevitt, J. J.; Lee, M. S. Y.; Ahlberg, P. E. (2023). "Response to comment on "Exceptional preservation of organs in Devonian placoderms from the Gogo largerstätte"". Science. 380 (6645). eadg3748. doi:10.1126/science.adg3748. PMID 37167391. S2CID 258618430.
  18. Andreev, P. S.; Sansom, I. J.; Li, Q.; Zhao, W.; Wang, J.; Wang, C.-C.; Peng, L.; Jia, L.; Qiao, T.; Zhu, M. (2022). "Spiny chondrichthyan from the lower Silurian of South China". Nature. 609 (7929): 969–974. Bibcode:2022Natur.609..969A. doi:10.1038/s41586-022-05233-8. PMID 36171377. S2CID 252570103.
  19. Schnetz, L.; Butler, R. J.; Coates, M. I.; Sansom, I. J. (2022). "Skeletal and soft tissue completeness of the acanthodian fossil record". Palaeontology. 65 (4): e12616. Bibcode:2022Palgy..6512616S. doi:10.1111/pala.12616. S2CID 250629392.
  20. Collareta, A.; Kindlimann, R.; Baglioni, A.; Landini, W.; Sarti, G.; Altamirano, A.; Urbina, M.; Bianucci, G. (2022). "Dental Morphology, Palaeoecology and Palaeobiogeographic Significance of a New Species of Requiem Shark (Genus Carcharhinus) from the Lower Miocene of Peru (East Pisco Basin, Chilcatay Formation)". Journal of Marine Science and Engineering. 10 (10). 1466. doi:10.3390/jmse10101466.
  21. Feichtinger, I.; Pollerspöck, J.; Harzhauser, M.; Auer, G.; Ćorić, S.; Kranner, M.; Guinot, G. (2022). "Shifts in composition of northern Tethyan elasmobranch assemblages during the last millennia of the Cretaceous". Cretaceous Research. 142. 105414. doi:10.1016/j.cretres.2022.105414. S2CID 253320811.
  22. Malyshkina, T. P.; Ward, D. J.; Nazarkin, M. V.; Nam, G.-S.; Kwon, S.-H.; Lee, J.-H.; Kim, T.-W.; Kim, D.-K.; Baek, D.-S. (2022). "Miocene Elasmobranchii from the Duho Formation, South Korea". Historical Biology: An International Journal of Paleobiology. 35 (9): 1726–1741. doi:10.1080/08912963.2022.2110870. S2CID 252512629.
  23. Siversson, M.; Cederström, P.; Ryan, H. E. (2022). "A new dallasiellid shark from the lower Campanian (Upper Cretaceous) of Sweden". GFF. 144 (2): 118–125. Bibcode:2022GFF...144..118S. doi:10.1080/11035897.2022.2097737. S2CID 252685325.
  24. Ivanov, A. O.; Kovalenko, E. S.; Murashev, M. M.; Podurets, K. M. (2022). "Euselachian Sharks (Elasmobranchii, Chondrichthyes) from the Middle and Late Permian of European Russia". Paleontological Journal. 56 (11): 1372–1384. doi:10.1134/S0031030122110065. S2CID 256618403.
  25. Pollerspöck, J.; Straube, N. (2022). "Phylogenetic placement and description of an extinct genus and species of kitefin shark based on tooth fossils (Squaliformes: Dalatiidae)". Journal of Systematic Palaeontology. 19 (15): 1083–1096. doi:10.1080/14772019.2021.2012537. S2CID 246398258.
  26. Ivanov, A. O. (2022). "New late Carboniferous chondrichthyans from the European Russia". Bulletin of Geosciences. 97 (2): 219–234. doi:10.3140/bull.geosci.1845. S2CID 249479522.
  27. Wen, W.; Kriwet, J.; Zhang, Q.; Benton, M. J.; Duffin, C. J.; Huang, J.; Zhou, C.; Hu, S.; Ma, Z. (2022). "Hybodontiform shark remains (Chondrichthyes, Elasmobranchii) from the Lower Triassic of Yunnan Province, China, with comments on hybodontiform diversity across the PTB". Journal of Vertebrate Paleontology. 42 (1): e2108712. Bibcode:2022JVPal..42E8712W. doi:10.1080/02724634.2022.2108712. S2CID 252136919.
  28. Feichtinger, I.; Guinot, G.; Straube, N.; Harzhauser, M.; Auer, G.; Ćorić, S.; Kranner, M.; Schellhorn, S.; Ladwig, J.; Thies, D.; Pollerspöck, J. (2022). "Revision of the Cretaceous shark Protoxynotus (Chondrichthyes, Squaliformes) and early evolution of somniosid sharks". Cretaceous Research. 140: Article 105331. Bibcode:2022CrRes.14005331F. doi:10.1016/j.cretres.2022.105331. hdl:11250/3061165. S2CID 251560679.
  29. Duffin, C. J.; Lauer, B.; Lauer, R. (2022). "Chimaeroid egg cases from the Late Jurassic of the Solnhofen area (S Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 306 (2): 161–175. doi:10.1127/njgpa/2022/1101. S2CID 253870360.
  30. Luccisano, V.; Rambert-Natsuaki, M.; Cuny, G.; Amiot, R.; Pouillon, J.-M.; Pradel, A. (2022). "Phylogenetic implications of the systematic reassessment of Xenacanthiformes and 'Ctenacanthiformes' (Chondrichthyes) neurocrania from the Carboniferous–Permian Autun Basin (France)". Journal of Systematic Palaeontology. 19 (23): 1623–1642. doi:10.1080/14772019.2022.2073279. S2CID 239328598.
  31. Luccisano, V.; Pradel, A.; Amiot, R.; Pouillon, J.-M.; Kindlimann, R.; Steyer, J.-S.; Cuny, G. (2022). "Systematics, ontogeny and palaeobiogeography of the genus Orthacanthus (Diplodoselachidae, Xenacanthiformes) from the lower Permian of France". Papers in Palaeontology. 8 (6): e1470. doi:10.1002/spp2.1470. S2CID 253701703.
  32. Kanno, S.; Tokumaru, S.; Nakagaki, S.; Nakajima, Y.; Misaki, A.; Hikida, Y.; Sato, T. (2022). "Santonian-Campanian neoselachian faunas of the Upper Cretaceous Yezo Group in Nakagawa Town, Hokkaido, Japan". Cretaceous Research. 133: Article 105139. Bibcode:2022CrRes.13305139K. doi:10.1016/j.cretres.2022.105139. S2CID 245831871.
  33. dos Santos, R. O.; Riff, D.; Amenábar, C. R.; Ramos, R. R. C.; Rodrigues, I. F.; Scheffler, S. M.; Carvalho, M. A. (2022). "New records of hexanchiform sharks (Elasmobranchii: Neoselachii) from the Late Cretaceous of Antarctica with comments on previous reports and described taxa". New Zealand Journal of Geology and Geophysics: 1–16. doi:10.1080/00288306.2022.2143382. S2CID 253570784.
  34. Feichtinger, I.; Kindlimann, R.; Guinot, G.; Harzhauser, M.; Pollerspöck, J. (2022). "First record of the somniosid shark Protoxynotus misburgensis from the Santonian (Late Cretaceous) of the Southern Tethyan Realm". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2022.2162401. S2CID 255331620.
  35. Herraiz, J. L.; Carrillo-Briceño, J. D.; Ferrón, H. G.; Adnet, S.; Botella, H.; Martínez-Pérez, C. (2022). "First fossil record (Middle Miocene) of the viper shark Trigonognathus Mochizuki and Ohe, 1990, in the Mediterranean realm". Journal of Vertebrate Paleontology. 42 (1). e2114360. Bibcode:2022JVPal..42E4360H. doi:10.1080/02724634.2022.2114360. hdl:10550/84833. S2CID 253065446.
  36. Bogan, S.; Agnolín, F. L. (2022). "The fossil record of the Bramble-shark Echinorhinus (Echinorhiniformes, Echinorhinidae) in South America". Journal of South American Earth Sciences. 120. 104083. Bibcode:2022JSAES.12004083B. doi:10.1016/j.jsames.2022.104083. S2CID 253173677.
  37. Amalfitano, J.; Dalla Vecchia, F. M.; Carnevale, G.; Fornaciari, E.; Roghi, G.; Giusberti, L. (2022). "Morphology and paleobiology of the Late Cretaceous large-sized shark Cretodus crassidens (Dixon, 1850) (Neoselachii; Lamniformes)". Journal of Paleontology. 96 (5): 1166–1188. Bibcode:2022JPal...96.1166A. doi:10.1017/jpa.2022.23. S2CID 248702856.
  38. Malyshkina, T. P.; Nam, G.-S.; Kwon, S. H. (2022). "Basking shark remains (Lamniformes, Cetorhinidae) from the Miocene of South Korea". Journal of Vertebrate Paleontology. 41 (5): e2037625. doi:10.1080/02724634.2021.2037625. S2CID 247466156.
  39. Cooper, J. A.; Pimiento, C.; Ferrón, H. G.; Benton, M. J. (2020). "Body dimensions of the extinct giant shark Otodus megalodon: a 2D reconstruction". Scientific Reports. 10 (1): Article number 14596. Bibcode:2020NatSR..1014596C. doi:10.1038/s41598-020-71387-y. PMC 7471939. PMID 32883981.
  40. Sternes, P. C.; Wood, J. J.; Shimada, K. (2023). "Body forms of extant lamniform sharks (Elasmobranchii: Lamniformes), and comments on the morphology of the extinct megatooth shark, Otodus megalodon, and the evolution of lamniform thermophysiology". Historical Biology: An International Journal of Paleobiology. 35: 139–151. doi:10.1080/08912963.2021.2025228. S2CID 246655344.
  41. Shimada, K.; Maisch, H. M.; Perez, V. J.; Becker, M. A.; Griffiths, M. L. (2023). "Revisiting body size trends and nursery areas of the Neogene megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), reveals Bergmann's rule possibly enhanced its gigantism in cooler waters". Historical Biology: An International Journal of Paleobiology. 35 (2): 208–217. doi:10.1080/08912963.2022.2032024. S2CID 247311831.
  42. McCormack, J.; Griffiths, M. L.; Kim, S. L.; Shimada, K.; Karnes, M.; Maisch, H.; Pederzani, S.; Bourgon, N.; Jaouen, K.; Becker, M. A.; Jöns, N.; Sisma-Ventura, G.; Straube, N.; Pollerspöck, J.; Hublin, J.-J.; Eagle, R. A.; Tütken, T. (2022). "Trophic position of Otodus megalodon and great white sharks through time revealed by zinc isotopes". Nature Communications. 13 (1): Article number 2980. Bibcode:2022NatCo..13.2980M. doi:10.1038/s41467-022-30528-9. PMC 9156768. PMID 35641494.
  43. Kast, E. R.; Griffiths, M. L.; Kim, S. L.; Rao, Z. C.; Shimada, K.; Becker, M. A.; Maisch, H. M.; Eagle, R. A.; Clarke, C. A.; Neumann, A. N.; Karnes, M. E.; Lüdecke, T.; Leichliter, J. N.; Martínez-García, A.; Akhtar, A. A.; Wang, X. T.; Haug, G. H.; Sigman, D. M. (2022). "Cenozoic megatooth sharks occupied extremely high trophic positions". Science Advances. 8 (25): eabl6529. Bibcode:2022SciA....8L6529K. doi:10.1126/sciadv.abl6529. PMC 9217088. PMID 35731884.
  44. Cooper, J. A.; Hutchinson, J. R.; Bernvi, D. C.; Cliff, G.; Wilson, R. P.; Dicken, M. L.; Menzel, J.; Wroe, S.; Pirlo, J.; Pimiento, C. (2022). "The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling". Science Advances. 8 (33): eabm9424. Bibcode:2022SciA....8M9424C. doi:10.1126/sciadv.abm9424. PMC 9385135. PMID 35977007.
  45. Benites-Palomino, A.; Velez-Juarbe, J.; Altamirano-Sierra, A.; Collareta, A.; Carrillo-Briceño, J. D.; Urbina, M. (2022). "Sperm whales (Physeteroidea) from the Pisco Formation, Peru, and their trophic role as fat sources for late Miocene sharks". Proceedings of the Royal Society B: Biological Sciences. 289 (1977): Article ID 20220774. doi:10.1098/rspb.2022.0774. PMC 9240678. PMID 35765834.
  46. Greenfield, T.; Delsate, D.; Candoni, L. (2022). "Toarcibatidae fam. nov., a replacement for the unavailable name Archaeobatidae Delsate & Candoni, 2001 (Chondrichthyes, Batomorphii)". Zootaxa. 5195 (5): 499–500. doi:10.11646/zootaxa.5195.5.8. PMID 37044410. S2CID 252926330.
  47. Cook, T. D.; Prothero, J.; Brudy, M.; Magraw, J. A. (2022). "Complex enameloid microstructure of †Ischyrhiza mira rostral denticles". Journal of Anatomy. 241 (3): 616–627. doi:10.1111/joa.13676. PMC 9358731. PMID 35445396.
  48. Boessenecker, R. W.; Gibson, M. L. (2022). "Dermal tubercles and bucklers of gigantic stingrays (Dasyatidae) from the Pleistocene of South Carolina and the stratigraphic origin of "Ceratoptera unios" Leidy, 1877". PalZ. 96 (2): 267–273. doi:10.1007/s12542-021-00592-5. S2CID 246082139.
  49. Villalobos-Segura, E.; Marramà, G.; Carnevale, G.; Claeson, K. M.; Underwood, C. J.; Naylor, G. J. P.; Kriwet, J. (2022). "The Phylogeny of Rays and Skates (Chondrichthyes: Elasmobranchii) Based on Morphological Characters Revisited". Diversity. 14 (6): Article 456. doi:10.3390/d14060456. PMC 7612883. PMID 35747489.
  50. Carolin, N.; Bajpai, S.; Maurya, A. S.; Schwarzhans, W. (2022). "New perspectives on late Tethyan Neogene biodiversity development of fishes based on Miocene (~ 17 Ma) otoliths from southwestern India". PalZ. 97: 43–80. doi:10.1007/s12542-022-00623-9. S2CID 249184395.
  51. Lin, C.-H.; Nolf, D. (2022). "Middle and late Eocene fish otoliths from the eastern and southern USA". European Journal of Taxonomy (814): 1–122. doi:10.5852/ejt.2022.814.1745. S2CID 248311849.
  52. Marramà, G.; Giusberti, L.; Carnevale, G. (2022). "A Rupelian coral reef fish assemblage from the Venetian Southern Alps (Berici Hills, Ne Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 469–513. doi:10.54103/2039-4942/16601. S2CID 248897657.
  53. Than-Marchese, B. A.; Alvarado-Ortega, J. (2022). "Armigatus felixi sp. nov. An Albian double armored herring (Clupeomorpha, Ellimmichthyiformes) from the Tlayúa lagerstätte, Mexico". Journal of South American Earth Sciences. 118: Article 103905. Bibcode:2022JSAES.11803905T. doi:10.1016/j.jsames.2022.103905.
  54. Carnevale, G.; Schwarzhans, W. (2022). "Marine life in the Mediterranean during the Messinian salinity crisis: a paleoichthyological perspective". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 283–324. doi:10.54103/2039-4942/15964. S2CID 248896746.
  55. Van Hinsbergh, V.; Hoedemakers, K. (2022). "Zanclean and Piacenzian otolith-based fish faunas of Estepona (Málaga, Spain)". Cainozoic Research. 22 (2): 241–352.
  56. Schwarzhans, W.; Ohe, F.; Tsuchiya, Y.; Ujihara, A. (2022). "Lanternfish otoliths (Myctophidae, Teleostei) from the Miocene of Japan". Zitteliana. 96: 103–134. doi:10.3897/zitteliana.96.83571. S2CID 249562163.
  57. Bannikov, A. F.; Zorzin, R. (2022). "A new species of the incertae sedis percoid fish †Bradyurus (Perciformes s.l.) from the Eocene of Bolca in northern Italy" (PDF). Studi e ricerche sui giacimenti terziari di Bolca, XXII - Miscellanea Paleontologica. 19: 45–53.
  58. de Figueiredo, F. J.; Gallo, V. (2022). "Caboellimma, a new genus for "Ellimma" cruzae Santos, 1990, an ellimmichthyiform fish (Teleostei: Clupeomorpha) from the Cabo Formation (Lower Cretaceous) of the Pernambuco-Paraíba Basin, north-east Brazil". Cretaceous Research. 142. 105393. doi:10.1016/j.cretres.2022.105393. S2CID 253006605.
  59. Schwarzhans, W. W.; Aguilera, O. A.; Scheyer, T. M.; Carrillo-Briceño, J. D. (2022). "Fish otoliths from the middle Miocene Pebas Formation of the Peruvian Amazon". Swiss Journal of Palaeontology. 141 (1): Article 2. doi:10.1186/s13358-022-00243-5. S2CID 247060503.
  60. Stack, J.; Gottfried, M. D. (2022). "A new, exceptionally well-preserved Permian actinopterygian fish from the Minnekahta Limestone of South Dakota, USA". Journal of Systematic Palaeontology. 19 (18): 1271–1302. doi:10.1080/14772019.2022.2036837. S2CID 247537869.
  61. Nam, G.-S.; Nazarkin, M. V.; Bannikov, A. F. (2023). "A new Chinese perch (Perciformes, Sinipercidae) from the early Miocene of South Korea". Historical Biology: An International Journal of Paleobiology. 35 (4): 615–622. doi:10.1080/08912963.2022.2056842. S2CID 247899188.
  62. Grădianu, I.; Bordeianu, M.; Codrea, V. (2023). "†Dicentrarchus oligocenicus, sp. nov. (Perciformes, Moronidae): the first record of an Oligocene Sea Bass skeleton from Romania, with a revision of †Morone major (Agassiz) from Piatra-Neamţ (Eastern Carpathians)". Historical Biology: An International Journal of Paleobiology. 35: 92–101. doi:10.1080/08912963.2021.2022136. S2CID 246524168.
  63. Stringer, G.; Parmley, D.; Quinn, A. (2022). "Eocene teleostean otoliths, including a new taxon, from the Clinchfield Formation (Bartonian) in Georgia, USA, with biostratigraphic, biogeographic, and paleoecologic implications". Palæovertebrata. 45 (1): e1. doi:10.18563/pv.45.1.e1. S2CID 245714502.
  64. Ribeiro, A. C.; Bockmann, F. A.; Poyato-Ariza, F. J. (2022). "Francischanos, a replacement genus for Dastilbe moraesi Silva-Santos, 1955, from the Quiricó Formation, Lower Cretaceous of the Sanfranciscana basin, Brazil (Ostariophysi: Gonorynchiformes)". Cretaceous Research. 135: Article 105212. Bibcode:2022CrRes.13505212R. doi:10.1016/j.cretres.2022.105212. S2CID 247531742.
  65. Kim, S.-H.; Lee, Y.-N.; Park, J.-Y.; Lee, S.; Winkler, D. A.; Jacobs, L. L.; Barsbold, R. (2022). "A new species of Osteoglossomorpha (Actinopterygii: Teleostei) from the Upper Cretaceous Nemegt Formation of Mongolia: paleobiological and paleobiogeographic implications". Cretaceous Research. 135: Article 105214. Bibcode:2022CrRes.13505214K. doi:10.1016/j.cretres.2022.105214. S2CID 247637952.
  66. Shen, C.; Arratia, G. (2022). "Re-description of the sexually dimorphic peltopleuriform fish Wushaichthys exquisitus (Middle Triassic, China): taxonomic implications and phylogenetic relationships". Journal of Systematic Palaeontology. 19 (19): 1317–1342. doi:10.1080/14772019.2022.2029595. S2CID 247731689.
  67. Sferco, E.; Aguilera, G.; Góngora, J. M.; Mirande, J. M. (2022). "The eldest grandmother, late Miocene †Jenynsia herbsti sp. nov. (Teleostei, Cyprinodontiformes), and the early diversification of the Anablepidae". Journal of Vertebrate Paleontology. 41 (6): e2039168. doi:10.1080/02724634.2022.2039168. S2CID 247419040.
  68. Gouiric-Cavalli, S.; Arratia, G. (2022). "A new †Pachycormiformes (Actinopterygii) from the Upper Jurassic of Gondwana sheds light on the evolutionary history of the group". Journal of Systematic Palaeontology. 19 (21): 1517–1550. doi:10.1080/14772019.2022.2049382. S2CID 248454343.
  69. Schwarzhans, W.; Radwańska, U. (2022). "A review of lanternfish otoliths (Myctophidae, Teleostei) of the early Badenian (Langhian, middle Miocene) from Bęczyn, southern Poland". Cainozoic Research. 22 (1): 9–24.
  70. Přikryl, T.; Kaur, J.; Murray, A. M. (2022). "New Oligocene Pseudocrenilabrinae cichlid fishes (Teleostei, Cichlidae) from freshwater deposits of Libya". Journal of Systematic Palaeontology. 19 (19): 1343–1366. doi:10.1080/14772019.2022.2033861. S2CID 247834413.
  71. Gallo, V.; de Paiva, H. C. L.; Petra, R.; Brito, P. (2022). "Lophionotus parnaibensis, sp. nov. (Semionotiformes, Semionotidae) in the Upper Jurassic of the Parnaíba Basin, Northeastern Brazil". Journal of Vertebrate Paleontology. 41 (4). e1994983. doi:10.1080/02724634.2021.1994983. S2CID 246164511.
  72. De Gracia, C.; Correa-Metrio, A.; Carvalho, M.; Velez-Juarbe, J.; Přikryl, T.; Jaramillo, C.; Kriwet, J. (2022). "Towards a unifying systematic scheme of fossil and living billfishes (Teleostei, Istiophoridae)". Journal of Systematic Palaeontology. 20 (1): Article 2091959. doi:10.1080/14772019.2022.2091959. S2CID 251704310.
  73. Bulanov, V. V.; Minikh, A. V.; Golubev, V. K. (2022). "Minicholepis primus gen. et sp. nov., a New Eurynotoidiform Fish (Actinopterygii) from the Permian of European Russia". Paleontological Journal. 56 (11): 1363–1371. doi:10.1134/S0031030122110041. S2CID 256618572.
  74. Alvarado-Ortega, J.; Alves, Y. M. (2022). "Nusaviichthys nerivelai gen. and sp. nov., an Albian crossognathiform fish from the Tlayúa lagerstätte, Mexico". Cretaceous Research. 135: Article 105189. Bibcode:2022CrRes.13505189A. doi:10.1016/j.cretres.2022.105189. S2CID 247428138.
  75. Schwarzhans, W.; Carnevale, G. (2022). "Bathyal fish otoliths from the Bartonian (Eocene) of the Turin Hill (Piedmont, Italy)". Rivista Italiana di Paleontologia e Stratigrafia. 128 (3): 575–583. doi:10.54103/2039-4942/17086. S2CID 250710613.
  76. Giles, S.; Feilich, K.; Warnock, R. C. M.; Pierce, S. E.; Friedman, M. (2022). "A Late Devonian actinopterygian suggests high lineage survivorship across the end-Devonian mass extinction". Nature Ecology & Evolution. 7 (1): 10–19. doi:10.1038/s41559-022-01919-4. PMID 36396970. S2CID 253626895.
  77. Yang, T.; Liang, W.; Cai, J.; Gu, H.; Han, L.; Chen, H.; Wang, H.; Bao, L.; Yan, D. (2022). "A new cyprinid from the Oligocene of Qaidam Basin, north-eastern Tibetan plateau, and its implications". Journal of Systematic Palaeontology. 19 (17): 1161–1182. doi:10.1080/14772019.2021.2015470. S2CID 246400371.
  78. Bannikov, A. F.; Zorzin, R. (2022). "†Pavarottia astescalpone sp. nov., a new percoid fish (Perciformes s.l.) from the Eocene of Bolca, northern Italy, representing a new extinct family" (PDF). Studi e ricerche sui giacimenti terziari di Bolca, XXII - Miscellanea Paleontologica. 19: 35–44.
  79. Richter, M.; Cisneros, J. C.; Kammerer, C. F.; Pardo, J.; Marsicano, C. A.; Fröbisch, J.; Angielczyk, K. D. (2022). "Deep-scaled fish (Osteichthyes: Actinopterygii) from the lower Permian (Cisuralian) lacustrine deposits of the Parnaíba Basin, NE Brazil". Journal of African Earth Sciences. 194: Article 104639. Bibcode:2022JAfES.19404639R. doi:10.1016/j.jafrearsci.2022.104639. S2CID 250224637.
  80. Schrøder, A. E.; Rasmussen, J. A.; Møller, P. R.; Carnevale, G. (2022). "A new beardfish (Teleostei, Polymixiiformes) from the Eocene Fur Formation, Denmark". Journal of Vertebrate Paleontology. 42 (2). e2142914. Bibcode:2022JVPal..42E2914S. doi:10.1080/02724634.2022.2142914. hdl:10037/28645. S2CID 254341990.
  81. Fang, G.; Wu, F. (2022). "The predatory fish Saurichthys reflects a complex underwater ecosystem of the Late Triassic Junggar Basin, Xinjiang, China". Historical Biology: An International Journal of Paleobiology. 35 (8): 1449–1459. doi:10.1080/08912963.2022.2098023. S2CID 250567176.
  82. Fang, G.-Y.; Sun, Y.-L.; Ji, C.; Wu, F.-X. (2022). "First record of Saurichthys (Actinopterygii: Saurichthyidae) from the Late Triassic of eastern Paleo-Tethys". Vertebrata PalAsiatica. 61 (1): 1–16. doi:10.19615/j.cnki.2096-9899.221013.
  83. Carnevale, G.; Schwarzhans, W.; Schrøder, A. N.; Lindow, B. E. K. (2022). "An Eocene conger eel (Teleostei, Anguilliformes) from the Lillebælt Clay Formation, Denmark". Bulletin of the Geological Society of Denmark. 70: 53–67. doi:10.37570/bgsd-2022-70-05. S2CID 248064097.
  84. Murray, A. M.; Chida, M.; Holmes, R. B. (2022). "New enchodontoid fish (Teleostei: Aulopiformes) from the Late Cretaceous of Lebanon". Journal of Vertebrate Paleontology. 42 (1): e2101370. Bibcode:2022JVPal..42E1370M. doi:10.1080/02724634.2022.2101370. S2CID 251679183.
  85. Nam, G.-S.; Nazarkin, M. V. (2022). "A new lanternfish (Myctophiformes, Myctophidae) from the Middle Miocene Duho Formation, South Korea". Journal of Vertebrate Paleontology. 42 (1). e2121924. Bibcode:2022JVPal..42E1924N. doi:10.1080/02724634.2022.2121924. S2CID 253258503.
  86. Bogan, S.; Agnolin, F. L. (2022). "The first fossil from the superdiverse clade Loricariinae (Siluriformes, Loricariidae): a new species of the Armored Catfish from the late Miocene of Paraná, Argentina". PalZ. 96 (2): 259–266. doi:10.1007/s12542-022-00613-x. S2CID 247193983.
  87. Schwarzhans, W.; Kovalchuk, O. (2022). "New data on fish otoliths from the late Badenian (Langhian, Middle Miocene) back reef environment in the Carpathian Foredeep (Horodok, western Ukraine)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (3): 317–326. doi:10.1127/njgpa/2022/1051. S2CID 248028845.
  88. Zhou, X.; You, J.; Jin, J.; Feng, Q.; Luo, Z.; Hu, J.; Li, Y. (2022). "A minute freshwater pycnodont fish from the Late Cretaceous on the southern margin of the Junggar Basin: Palaeoecological implications". Historical Biology: An International Journal of Paleobiology. 35 (9): 1528–1535. doi:10.1080/08912963.2022.2099274. S2CID 250515577.
  89. Henderson, S.; Dunne, E. M.; Fasey, S. A.; Giles, S. (2022). "The early diversification of ray-finned fishes (Actinopterygii): hypotheses, challenges and future prospects". Biological Reviews. 98 (1): 284–315. doi:10.1111/brv.12907. PMC 10091770. PMID 36192821.
  90. Henderson, S.; Dunne, E. M.; Giles, S. (2022). "Sampling biases obscure the early diversification of the largest living vertebrate group". Proceedings of the Royal Society B: Biological Sciences. 289 (1985). 20220916. doi:10.1098/rspb.2022.0916. PMC 9579763. PMID 36259213.
  91. Brownstein, C. D. (2022). "Evidence of large sturgeons in the Paleocene of North America". Journal of Paleontology. 97: 218–222. doi:10.1017/jpa.2022.87. S2CID 253653018.
  92. Kumar, K.; Bajpai, S.; Ghosh, T.; Pandey, P.; Bhattacharya, D. (2022). "Oldest East Gondwanan pycnodont fishes (Neopterygii, Pycnodontiformes) from the Middle Jurassic (Bathonian) of Jaisalmer, western India". PalZ. 96 (4): 795–804. doi:10.1007/s12542-022-00619-5. S2CID 248184425.
  93. Brownstein, C. D.; Yang, L.; Friedman, M.; Near, T. J. (2022). "Phylogenomics of the Ancient and Species-Depauperate Gars Tracks 150 Million Years of Continental Fragmentation in the Northern Hemisphere". Systematic Biology. 72 (1): 213–227. doi:10.1093/sysbio/syac080. PMID 36537110.
  94. Johanson, Z.; Liston, J.; Davesne, D.; Challands, T.; Smith, M. M. (2022). "Mechanisms of dermal bone repair after predatory attack in the giant stem-group teleost Leedsichthys problematicus Woodward, 1889a (Pachycormiformes)". Journal of Anatomy. 241 (2): 393–406. doi:10.1111/joa.13689. PMC 9296021. PMID 35588137.
  95. Micklich, N.; Arratia, G. (2022). "The enigmatic teleostean fish, Thaumaturus intermedius Weitzel, 1933 from the Eocene of Lake Messel (Hessen, S Germany). Part I: Anatomy and taxonomy revised". Palaeontographica Abteilung A. 323 (1–3): 1–73. Bibcode:2022PalAA.323....1M. doi:10.1127/pala/2022/0125. S2CID 248029950.
  96. Marramà, G.; Khalloufi, B.; Carnevale, G. (2023). "Redescription of 'Diplomystus' solignaci Gaudant & Gaudant, 1971 from the Cretaceous of Tunisia, and a new hypothesis of double-armored herring relationships". Historical Biology: An International Journal of Paleobiology. 35: 163–184. doi:10.1080/08912963.2021.2025230. S2CID 246669579.
  97. Kovalchuk, O.; Barkaszi, Z.; Anfimova, G. (2022). "Records of Enchodus (Teleostei, Aulopiformes) from the Cenomanian of Ukraine in the light of European distribution of enchodontid fishes". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (3): 295–307. doi:10.1127/njgpa/2022/1049. S2CID 248042502.
  98. Murray, A. M. (2022). "Re-description and phylogenetic relationships of †Protosyngnathus sumatrensis (Teleostei: Syngnathoidei), a freshwater pipefish from the Eocene of Sumatra, Indonesia". Journal of Systematic Palaeontology. 20 (1). 2113832. doi:10.1080/14772019.2022.2113832. S2CID 252664420.
  99. Gierl, C.; Dohrmann, M.; Keith, P.; Humphreys, W.; Esmaeili, H. R.; Vukić, J.; Šanda, R.; Reichenbacher, B. (2022). "An integrative phylogenetic approach for inferring relationships of fossil gobioids (Teleostei: Gobiiformes)". PLOS ONE. 17 (7): e0271121. Bibcode:2022PLoSO..1771121G. doi:10.1371/journal.pone.0271121. PMC 9269936. PMID 35802740.
  100. Troyer, E. M.; Betancur-R, R.; Hughes, L. C.; Westneat, M.; Carnevale, G.; White, W. T.; Pogonoski, J. J.; Tyler, J. C.; Baldwin, C. C.; Ortí, G.; Brinkworth, A.; Clavel, J.; Arcila, D. (2022). "The impact of paleoclimatic changes on body size evolution in marine fishes". Proceedings of the National Academy of Sciences of the United States of America. 119 (29): e2122486119. Bibcode:2022PNAS..11922486T. doi:10.1073/pnas.2122486119. PMC 9308125. PMID 35858316.
  101. Wang, Z.; Jiang, X.; Wang, X.; Gao, J.; Zhu, S. (2022). "Tooth Plates of Ceratodus (Dipnoi, Ceratodontidae) from the Upper Jurassic Shaximiao Formation of Guang'an, Sichuan Province, China". Acta Geologica Sinica (English Edition). 96 (3): 766–775. doi:10.1111/1755-6724.14774. S2CID 237853795.
  102. Minikh, A. O. (2022). "A New Species of the Genus Ceratodus (Dipnoi, Ceratodontidae) from the Triassic of the Southern Cis-Urals". Paleontological Journal. 56 (11): 1385–1390. doi:10.1134/S0031030122110090. S2CID 256618440.
  103. Luo, Y.; Cui, X.; Qiao, T.; Zhu, M. (2022). "A new dipnoan genus from the Middle Devonian of Huize, Yunnan, China". Journal of Systematic Palaeontology. 19 (18): 1303–1315. doi:10.1080/14772019.2022.2042409. S2CID 247815324.
  104. Brownstein, C. D.; Bissell, I. C. (2022). "Species delimitation and coexistence in an ancient, depauperate vertebrate clade". BMC Ecology and Evolution. 22 (1): Article number 90. doi:10.1186/s12862-022-02043-4. PMC 9277872. PMID 35820797.
  105. Downs, J. P.; Daeschler, E. B. (2022). "Second species of Langlieria (Tristichopteridae, Sarcopterygii) from the Upper Devonian Catskill Formation of Pennsylvania, U.S.A., and a new phylogenetic consideration of Tristichopteridae". Proceedings of the Academy of Natural Sciences of Philadelphia. 167: 241–260. doi:10.1635/053.167.0115. S2CID 248357147.
  106. Ferrante, C.; Menkveld-Gfeller, U.; Cavin, L. (2022). "The first Jurassic coelacanth from Switzerland". Swiss Journal of Palaeontology. 141 (1). 15. doi:10.1186/s13358-022-00257-z. PMC 9499918. PMID 36164559.
  107. Stewart, T. A.; Lemberg, J. B.; Daly, A.; Daeschler, E. B.; Shubin, N. H. (2022). "A new elpistostegalian from the Late Devonian of the Canadian Arctic". Nature. 608 (7923): 563–568. Bibcode:2022Natur.608..563S. doi:10.1038/s41586-022-04990-w. PMC 9385497. PMID 35859171.
  108. Panzeri, K. M.; Gouiric Cavalli, S.; Cione, A. L.; Filippi, L. S. (2022). "Description of the first Cretaceous (Santonian) articulated skeletal lungfish remains from South America, Argentina". Comptes Rendus Palevol. 21 (37): 815–835. doi:10.5852/cr-palevol2022v21a37. S2CID 253034856.
  109. Ciudad Real, M.; Mondéjar Fernández, J.; Vidal, D.; Botella, H. (2022). "Is Onychodontida (Osteichthyes, Sarcopterygii) monophyletic? Assessing discordant phylogenies with quantitative comparative cladistics". Spanish Journal of Palaeontology. 37 (1): 87–100. doi:10.7203/sjp.24256. S2CID 248878841.
  110. Mondéjar Fernández, J.; Meunier, F. J.; Cloutier, R.; Clément, G.; Laurin, M. (2022). "Life history and ossification patterns in Miguashaia bureaui reveal the early evolution of osteogenesis in coelacanths". PeerJ. 10: e13175. doi:10.7717/peerj.13175. PMC 8994491. PMID 35411253.
  111. Toriño, P.; Gausden, S. F.; Etches, S.; Rankin, K.; Marshall, J. E. A.; Gostling, N. J. (2022). "An enigmatic large mawsoniid coelacanth (Sarcopterygii, Actinistia) from the Upper Jurassic Kimmeridge Clay Formation of England". Journal of Vertebrate Paleontology. 42 (1). e2125813. Bibcode:2022JVPal..42E5813T. doi:10.1080/02724634.2022.2125813. S2CID 253141244.
  112. Clement, A. M.; Challands, T. J.; Cloutier, R.; Houle, L.; Ahlberg, P. E.; Collin, S. P.; Long, J. A. (2022). "Morphometric analysis of lungfish endocasts elucidates early dipnoan palaeoneurological evolution". eLife. 11: e73461. doi:10.7554/eLife.73461. PMC 9275822. PMID 35818828.
  113. Cui, X.; Friedman, M.; Qiao, T.; Yu, Y.; Zhu, M. (2022). "The rapid evolution of lungfish durophagy". Nature Communications. 13 (1): Article number 2390. Bibcode:2022NatCo..13.2390C. doi:10.1038/s41467-022-30091-3. PMC 9061808. PMID 35501345.
  114. Boirot, M.; Challands, T.; Cloutier, R. (2022). "Paedomorphosis and neurocranial ossification in two Devonian lungfishes". Acta Palaeontologica Polonica. 67 (2): 283–295. doi:10.4202/app.00841.2020. S2CID 249826667.
  115. Panzeri, K. M.; Pereyra, M. E.; Cione, A. L. (2022). "The South American longfish Metaceratodus baibianorum (Dipnoi, Ceratodontidae) from the Upper Cretaceous La Colonia Formation, Patagonia, Argentina: an approach from the histology of the tooth plates". Cretaceous Research. 133: Article 105144. doi:10.1016/j.cretres.2022.105144. S2CID 246121918.
  116. Hirasawa, T.; Hu, Y.; Uesugi, K.; Hoshino, M.; Manabe, M.; Kuratani, S. (2022). "Morphology of Palaeospondylus shows affinity to tetrapod ancestors". Nature. 606 (7912): 109–112. Bibcode:2022Natur.606..109H. doi:10.1038/s41586-022-04781-3. PMID 35614222. S2CID 249064477.
  117. Brownstein, C. D. (2023). "Palaeospondylus and the early evolution of gnathostomes". Nature. 620 (7975): E20–E22. Bibcode:2023Natur.620E..20B. doi:10.1038/s41586-023-06434-5. PMID 37612401. S2CID 261078644.
  118. Hirasawa, T.; Kuratani, S. (2023). "Reply to: Palaeospondylus and the early evolution of gnathostomes". Nature. 620 (7975): E23–E24. Bibcode:2023Natur.620E..23H. doi:10.1038/s41586-023-06435-4. PMID 37612398.
  119. McMenamin, M. A. S. (2022). "Permodontodus waurikensis n. gen. n. sp., an Unusual Osteichthyan from Permian Oklahoma, USA". Zootaxa. 5188 (2): 121–132. doi:10.11646/zootaxa.5188.2.2. PMID 37044790. S2CID 252337349.
  120. Andreev, P. S.; Sansom, I. J.; Li, Q.; Zhao, W.; Wang, J.; Wang, C.-C.; Peng, L.; Jia, L.; Qiao, T.; Zhu, M. (2022). "The oldest gnathostome teeth". Nature. 609 (7929): 964–968. Bibcode:2022Natur.609..964A. doi:10.1038/s41586-022-05166-2. PMID 36171375. S2CID 252569771.
  121. Ferrón, H. G.; Donoghue, P. C. J. (2022). "Evolutionary analysis of swimming speed in early vertebrates challenges the 'New Head Hypothesis'". Communications Biology. 5 (1): Article number 863. doi:10.1038/s42003-022-03730-0. PMC 9402584. PMID 36002583.
  122. Gai, Z.; Zhu, M.; Ahlberg, P. E.; Donoghue, P. C. J. (2022). "The Evolution of the Spiracular Region From Jawless Fishes to Tetrapods". Frontiers in Ecology and Evolution. 10: Article 887172. doi:10.3389/fevo.2022.887172. hdl:1983/fa71dcf9-734b-46e1-be89-c3ac845a111c.
  123. Deakin, W. J.; Anderson, P. S. L.; den Boer, W.; Smith, T. J.; Hill, J. J.; Rücklin, M.; Donoghue, P. C. J.; Rayfield, E. J. (2022). "Increasing morphological disparity and decreasing optimality for jaw speed and strength during the radiation of jawed vertebrates". Science Advances. 8 (11): eabl3644. Bibcode:2022SciA....8L3644D. doi:10.1126/sciadv.abl3644. PMC 8932669. PMID 35302857.
  124. Tackett, L. S.; Zierer, D.; Clement, A. C. (2022). "Actinopterygian and chondrichthyan ichthyoliths reveal enhanced cosmopolitanism in Late Triassic marine ecosystems". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2022.2131405. S2CID 253613700.
  125. Ebersole, J. A.; Solonin, S. V.; Cicimurri, D. J.; Arkhangelsky, M. S.; Martynovich, N. V. (2022). "Marine fishes (Chondrichthyes, Holocephali, Actinopterygii) from the Upper Cretaceous (Campanian) Rybushka Formation near Beloe Ozero, Saratov Oblast, Russia". Rivista Italiana di Paleontologia e Stratigrafia. 128 (2): 369–409. doi:10.54103/2039-4942/16954. S2CID 248905659.
  126. Salvatteci, R.; Schneider, R. R.; Galbraith, E.; Field, D.; Blanz, T.; Bauersachs, T.; Crosta, X.; Martinez, P.; Echevin, V.; Scholz, F.; Bertrand, A. (2022). "Smaller fish species in a warm and oxygen-poor Humboldt Current system" (PDF). Science. 375 (6576): 101–104. Bibcode:2022Sci...375..101S. doi:10.1126/science.abj0270. PMID 34990239. S2CID 245828321.
  127. Capasso, L. (2022). "Palaeophysiology of reproduction in fossil fishes: an overview and new insights, with the description of four new ichnotaxa" (PDF). Bollettino del Museo Civico di Storia Naturale di Verona. 46: 23–74.

Share this article:

This article uses material from the Wikipedia article 2022_in_paleoichthyology, and is written by contributors. Text is available under a CC BY-SA 4.0 International License; additional terms may apply. Images, videos and audio are available under their respective licenses.