Technique protects privacy when making online recommendations

Researchers devise an efficient protocol to keep a user’s private information secure when algorithms use it to recommend products, songs, or shows.

Adam Zewe | MIT News Office • mit
May 12, 2022 ~7 min

Unpacking black-box models

Researchers create a mathematical framework to evaluate explanations of machine-learning models and quantify how well people understand them.

Adam Zewe | MIT News Office • mit
May 5, 2022 ~7 min


Artificial intelligence system learns concepts shared across video, audio, and text

A machine-learning model can identify the action in a video clip and label it, without the help of humans.

Adam Zewe | MIT News Office • mit
May 4, 2022 ~7 min

What words can convey

Natural language processing models capture rich knowledge of words’ meanings through statistics.

Jennifer Michalowski | McGovern Institute for Brain Research • mit
May 3, 2022 ~5 min

A one-up on motion capture

A new neural network approach captures the characteristics of a physical system’s dynamic motion from video, regardless of rendering configuration or image differences.

Lauren Hinkel | MIT-IBM Watson AI Lab • mit
April 29, 2022 ~9 min

Estimating the informativeness of data

MIT researchers can now estimate how much information data are likely to contain, in a more accurate and scalable way than previous methods.

Rachel Paiste | Department of Brain and Cognitive Sciences • mit
April 25, 2022 ~7 min

An easier way to teach robots new skills

Researchers have developed a technique that enables a robot to learn a new pick-and-place task with only a handful of human demonstrations.

Adam Zewe | MIT News Office • mit
April 25, 2022 ~7 min

A new state of the art for unsupervised vision

MIT CSAIL scientists created an algorithm to solve one of the hardest tasks in computer vision: assigning a label to every pixel in the world, without human supervision.

Rachel Gordon | MIT CSAIL • mit
April 21, 2022 ~9 min


Anticipating others’ behavior on the road

A new machine-learning system may someday help driverless cars predict the next moves of nearby drivers, cyclists, and pedestrians in real-time.

Adam Zewe | MIT News Office • mit
April 21, 2022 ~8 min

A flexible way to grab items with feeling

MIT engineers Edward Adelson and Sandra Liu duo develop a robotic gripper with rich sensory capabilities.

Rachel Gordon | MIT CSAIL • mit
April 15, 2022 ~7 min

/

72