Academ_Stellated_dodecagon.svg


Summary

Description
English: Extend every side of a given regular polygon can start a construction of another regular polygon, provided that the extensions intersect.  Such a construction and its result are called a stellation of the initial polygon, if this polygon and the result are respectively convex and not convex.  On the image is given a convex regular dodecagon.  Twelve straight lines in black are extensions of its sides.  Each black line cuts ten other black lines.  Each intersection point is counted two times if we multiply ten by twelve, so there are sixty intersection points, including the vertices of the initial polygon.  Among the sixty points, twelve points are the vertices of the polygon, the only one up to similarity, being regular and not convex and having twelve sides.  To construct such a dodecagon from the given regular dodecagon, another way is to draw the segment joining A and B ,  and all the diagonals equal to this one.

To construct the stellation, we choose a vertex of the given polygon as start point:  point A ,  and then a rotation sense around the center of the polygon: anticlockwise on the image.  In other words, we choose a ray (a half-line) with origin A ,  containing a side of the convex polygon.  Running along this ray from point A ,  our pencil stops at the fifth intersection with a black line:  point F ,  first vertex of the star.  And then from point F ,  our pencil runs along the new black line up to a second vertex of the convex polygon:  point B ,  start point of the second step.  The process consists of twelve steps, repeated until we come back to point A ,  after passing through all the intersection points: 12 × 5 = 60 points. To draw attention on the intersection points of the first steps, there are two times five bicolour disks on the intersections.

If an integer lower than 5 replaces 5 in the process, a convex regular polygon is constructed, not a stellation.  Each side of the result contains a side of the initial polygon, of course.  With 4 instead of 5, we construct an equilateral triangle.  With 3 instead of 5 we get a square, with 2 a regular hexagon.  We construct nothing but the initial polygon if we replace 5 with 1.  In Schläfli's notation, where the first integer is the number of sides of the regular polygon, the results are denoted by {12;5} for the stellation, {3;1}, {4;1}, {6;1}, {12;1} for the other constructions.
Date
Source Own work
Author Baelde
SVG development
InfoField
The SVG code is valid .
This /Baelde was created with a text editor .

Licensing

Arthur Baelde , the copyright holder of this work, hereby publishes it under the following licenses:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
Attribution: Arthur Baelde
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
GNU head Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License .
You may select the license of your choice.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

28 June 2012

image/svg+xml

2bc7b7f146db1e66e66ca08ed24743fe274258ce

2,586 byte

750 pixel

750 pixel