Spectral_density_of_gaussian_ensembels,_N_=_1_to_32.png


Summary

Description
English: ```python

import numpy as np import matplotlib.pyplot as plt

  1. 1 for GOE, 2 for GUE, 4 for GSE

betas = 1, 2, 4 Ns = [1, 2, 4, 8, 16, 32] # matrix sizes

  1. Choose number of samples

Nmatr = 10000 repeats = 10

  1. The following condition selects the desired ensemble: a number Nmatr
  2. of matrices are diagonalized, and the eigenvalues are collected in the vector E

Es = {} for _ in range(repeats):

   for N in Ns:
     for beta in betas:
       if beta == 1:  # Gaussian Orthogonal Ensemble
           M = np.random.randn(Nmatr, N, N)
           M = (M + M.transpose((0, 2, 1))) / 2
           E = np.linalg.eigvals(M.reshape(Nmatr, N, N)).flatten()
       elif beta == 2:  # Gaussian Unitary Ensemble
           M_real = np.random.randn(Nmatr, N, N)
           M_imag = np.random.randn(Nmatr, N, N)
           M = (M_real + 1j * M_imag + M_real.transpose((0, 2, 1)) - 1j * M_imag.transpose((0, 2, 1))) / 2
           E = np.linalg.eigvals(M.reshape(Nmatr, N, N)).flatten()
       elif beta == 4:  # Gaussian Symplectic Ensemble
           A = np.random.randn(Nmatr, N, N) + 1j * np.random.randn(Nmatr, N, N)
           B = np.random.randn(Nmatr, N, N) + 1j * np.random.randn(Nmatr, N, N)
           M_top = np.block(A, B)
           M_bottom = np.block(-np.conj(B), np.conj(A))
           M = np.block([[M_top], [M_bottom]])
           M = (M + np.conj(M.transpose((0, 2, 1)))) / 2
           E = np.linalg.eigvals(M.reshape(Nmatr, 2 * N, 2 * N)).flatten()
       
       if (N, beta) in Es: 
           Es[(N, beta)]= np.append(Es[(N, beta)], E)
       else: 
           Es[(N, beta)] = E

fig, axs = plt.subplots(2, 3, figsize=(18, 9))

legends = {1: "GOE", 2: "GUE", 4: "GSE"} colors = {1: "blue", 2: "red", 4: "green"}

for i, N in enumerate(Ns):

   row = i // 3
   col = i % 3
   ax = axs[row, col]
   for beta in betas:
       color = colors[beta]
       E = Es[(N, beta)]
       xs = np.real(E) / np.sqrt(2 * beta * N)
       bin_heights, bin_borders, _ = ax.hist(xs, bins=500, density=True, color=color, alpha=0.1)
       bin_centers = bin_borders[:-1] + np.diff(bin_borders) / 2
       # Compute sliding window average
       window_size = 5
       window = np.ones(window_size) / window_size
       smoothed_heights = np.convolve(bin_heights, window, mode='same')
       # Plot sliding window average
       ax.plot(bin_centers, smoothed_heights, label=legends[beta], color=color)
   # Add plot labels and title
   ax.set_xlabel('x', fontsize=14)
   ax.set_ylabel('ρ(x)', fontsize=14)
   ax.grid(True)
   ax.legend()

plt.tight_layout() fig.suptitle(r'Eigenvalues $/\sqrt Template:2N\beta $, with N = {} to {}'.format(Ns[0], Ns[-1]), fontsize=18, y=1.04) plt.show()

```
Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

17 May 2023

image/png